Real Analysis Proof: r(n), t(n), e, and n

teacher2love
Messages
2
Reaction score
0
1. Let r(n) = (1+1/n)^n and t(n) = (1+1/n)^n+1. (Use r(n) converge to e).
Show that t(n) > r(n) for all n and that lim n->inf(t(n) - r(n)) = 0.
Show that {tn} is a decreasing sequence with limit e. {Hint: express {(1+1/n-1)/(1+1/n)}^n as (1+a)^n and apply Bernoulli's inequality). Use n=10 to calculate upper and lower estimates for e. How large should n be to estimate e to 3 decimal places?
 
Physics news on Phys.org
teacher2love said:
1. Let r(n) = (1+1/n)^n and t(n) = (1+1/n)^n+1. (Use r(n) converge to e).
Show that t(n) > r(n) for all n and that lim n->inf(t(n) - r(n)) = 0.
Show that {tn} is a decreasing sequence with limit e. {Hint: express {(1+1/n-1)/(1+1/n)}^n as (1+a)^n and apply Bernoulli's inequality). Use n=10 to calculate upper and lower estimates for e. How large should n be to estimate e to 3 decimal places?

well about showing that t(n)>r(n) does not appear to be that difficult

(1+\frac{1}{n})^{n+1}=(1+\frac{1}{n})^{n}(1+\frac{1}{n})
now since, (1+\frac{1}{n})>1 we have that

t(n)= (1+\frac{1}{n})^{n+1}=(1+\frac{1}{n})^{n})(1+\frac{1}{n})>(1+\frac{1}{n})^{n}=r(n)

now:

\lim_{n\rightarrow\infty}(t(n)-r(n))=\lim_{n\rightarrow\infty}((1+\frac{1}{n})^{n}(1+\frac{1}{n}))-\lim_{x\rightarrow\infty}(1+\frac{1}{n})^{n}=\lim_{n\rightarrow\infty}(1+\frac{1}{n})^{n}*\lim_{n\rightarrow\infty}(1+\frac{1}{n})-e=e*1-e=0

Now we want to show that t_n-_1>t_n this part is quite easy to show as well

\frac{t_n-_1}{t_n}=\frac{(1+\frac{1}{n-1})^{n}}{(1+\frac{1}{n})^{n+1}}=...=(\frac{n^{2}}{n^{2}-1})^{n}*\frac{n}{n+1}=(\frac{n^2-1+1}{n^{2}-1})^{n}\frac{n}{n+1}=(1+\frac{1}{n^{2}-1})^{n}\frac{n}{n+1} now using bernuli inequality we get:

\frac{t_n-_1}{t_n}=\frac{(1+\frac{1}{n-1})^{n}}{(1+\frac{1}{n})^{n+1}}=...=(\frac{n^{2}}{n^{2}-1})^{n}*\frac{n}{n+1}=<br /> (\frac{n^2-1+1}{n^{2}-1})^{n}\frac{n}{n+1}=<br /> (1+\frac{1}{n^{2}-1})^{n}\frac{n}{n+1}&gt;(1+\frac{n}{n^{2}-1})\frac{n}{n+1}&gt;(1+\frac{n}{n^{2}})\frac{n}{n+1}=1

hence t_n-_1&gt;t_n which means that the sequence is decreasing...


Try to show some work of yours, for people here won't do your homework, and this way you may get more replies.


P.S. This looks more like calculus..lol...where does real analysis come into play here?!
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top