Orodruin said:
That depends on what you mean by "mass energy". As the mass of the original systems it is certainly a mass energy of, e.g., the incoming O2 molecule. If you further subdivide that you can say that the mass energy of the molecule has several contributions. It is all a question of what level you do your bookkeeping at.
"Bookkeeping" is a great word to use here.
I don't view the mass of a composite system as a
form of energy, per se. Rather, it's the total energy of the system as measured in its rest frame, equal to the sum of the kinetic, potential, and rest energies (masses) of the system's constituents (as measured in that frame)—and the same applies to the masses of the constituents, and to the masses of the constituents' constituents, and so on, until you get to the elementary particles, whose mass is fundamental and certainly a "form" of energy.
So yes, I'd say that the mass of a composite system is more a "bookkeeping" device than a "form" of energy. But it's also convenient when taking an "outside" view to speak of a system's mass as energy that can be converted to other types of energy. For this purpose, I think "type" is a better word than "form."
My take on the pet peeves:
-"Mass is converted to energy." No, mass already
is energy (rest energy). Rest energy can be converted to other types of energy. In matter/antimatter annihilation, for example, the mass of elementary particles is converted to kinetic/electromagnetic energy (and the elementary particles cease to exist). In chemical and nuclear reactions, we can take an "outside" view and say that mass of the composite system is converted to kinetic energy, or we can take an "inside" view and say that potential energy is converted to kinetic energy.
-"Matter is converted to energy." No, the energy in question was already a property of the "matter." Closer to the mark is "matter is converted to radiation," but even then one needs to carefully define both "matter" and "radiation."