Rearrangeing Inverse Hyperbolic functions

AI Thread Summary
The discussion revolves around rearranging the equation coshy^2 - sinhy^2 = 1 to isolate coshy^2. The user initially arrives at coshy^2 = 1 + Sinhy^2, while the book presents it as coshy^2 = Sinhy^2 + 1. Both expressions are mathematically equivalent, as confirmed by using the definitions of sinhy and coshy. The user seeks clarity on the rearrangement process, suspecting a deeper reasoning behind the book’s format. Ultimately, both forms yield the same result, highlighting the flexibility in mathematical expression.
Observables
Messages
14
Reaction score
0
Hi,

My brain is not working today. So can someone please tell me what I am doing wrong.

(^2 = squared)

coshy^2 - sinhy^2 = 1, how do I rearrange this for coshy^2

I keep getting: coshy^2 = 1 + Sinhy^2

The book that I'm looking at has it this way: coshy^2 = Sinhy^2 + 1

Thanks

Obs
 
Mathematics news on Phys.org
Time for brain overhaul. Both expressions evaluate the same.
 
Observables said:
Hi,

My brain is not working today. So can someone please tell me what I am doing wrong.

(^2 = squared)

coshy^2 - sinhy^2 = 1, how do I rearrange this for coshy^2

I keep getting: coshy^2 = 1 + Sinhy^2

The book that I'm looking at has it this way: coshy^2 = Sinhy^2 + 1

Thanks

Obs

Hey observables and welcome to the forums.

The easiest way to find if the book is right (ie coshy^2 - sinhy^2 = 1) is to just use the definition of sinhy and coshy.

sinhy = 1/2 (e^x - e^-x)
coshy = 1/2(e^x + e^-x)

so sinhy^2 = 1/4 [e^2x - 2 + e^-2x)
coshy^2 = 1/4(e^2x + 2 - e^-2x)

coshy^2 - sinhy^2 = 1/2 - (-1/2) = 1
 
SteamKing said:
Time for brain overhaul. Both expressions evaluate the same.

Hi,

I realized that, but I couldn't figure out how the book was doing the rearranging. I've been differentiating a few Inverse Hyperbolic functions, and I thought the reason that the book rearranged differently to me was that somewhere down the line it would become clear why it was done.

Obs.
 
chiro said:
Hey observables and welcome to the forums.

The easiest way to find if the book is right (ie coshy^2 - sinhy^2 = 1) is to just use the definition of sinhy and coshy.

sinhy = 1/2 (e^x - e^-x)
coshy = 1/2(e^x + e^-x)

so sinhy^2 = 1/4 [e^2x - 2 + e^-2x)
coshy^2 = 1/4(e^2x + 2 - e^-2x)

coshy^2 - sinhy^2 = 1/2 - (-1/2) = 1

Hi Chiro,

Thanks for the info.

Obs.
 
Gezzz breakfast time must be confusing at your place. Trying to decide whether to have "eggs and toast" or "toast and eggs". It must keep you occupied for hours.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top