Rectified Current Through an Inductor

AI Thread Summary
The discussion focuses on calculating the magnetomotive force (mmf) of an inductor in a circuit with a 24 VAC power supply, a full-wave rectifier, and an inductor with a resistance of 47 Ohms. The rectified output voltage is determined by the peak voltage minus the forward voltage drop across the diodes, and the RMS current through the inductor is calculated using the total output resistance. Participants clarify that the current is not a simple AC sine wave but a DC current with even harmonic ripple, influenced by the inductor's reactance. The need to specify load resistance and evaluate the inductor's reactance for each harmonic is emphasized. Accurate waveform simulation requires complete component specifications, which are currently lacking.
akaf244
Messages
2
Reaction score
0
TL;DR Summary
rectified current through inductor
Hello, I need to find the magnetomotive force (mmf) of an inductor using NI (turns multiplied by amperes). The set up is pretty simple, AC power supply set at 24 VAC goes through a full wave rectifier (4 diodes) and into an inductor. If the inductor has a resistance of 47 Ohms, it looks like this (ignore Ls and Rs)...

1566253695957.png


I have spent a few hours and a lot of different equations trying to figure out the current flowing through the inductor. I know it will look something like this...
1566253779948.png

but can anyone explain to me how they are graphing the current??

Thank you! (screenshots from: https://www.plexim.com/academy/power-electronics/diode-rect-ind-load )
 
Engineering news on Phys.org
Welcome to PF.
The Vgrid, 24 VAC, will have a peak voltage of Vgrid * Sqrt( 2 ).
Two bridge diodes need to conduct and will have a forward voltage of say, Vpn each.
The rectified output voltage will peak at; Vo = ( Vgrid * Sqrt( 2 )) - ( 2 * Vpn ).
The rectified waveform is close to a sine so the RMS value will be; Vrms = Vo / sqrt( 2 ).
The inductor will phase shift the DC current in proportion to the inductance.
The total output resistance will be; Ro = Rload + Rind.
The RMS average current through the inductor will be; Io = Vrms / Ro.
 
Hello, thank you for the response. How can I find Rload and Rind now? Shouldnt i be using Z? (Z=sqrt(R^2+(wL)^2)).Thank you.
 
Last edited:
Your question is unclear. Are you trying to find average RMS values or instantaneous values as a function of time?

If RMS, be aware that the sqrt(2) applies only for sinusoidal waveforms. This case in non-sinusoidal waveforms.
 
akaf244 said:
Hello, thank you for the response. How can I find Rload and Rind now?
You have specified resistance of the inductor as; Rind = 47 ohms.
You must identify the load resistance; maybe the box there with 47 ohms is for the load?

akaf244 said:
Shouldnt i be using Z? (Z=sqrt(R^2+(wL)^2)).Thank you.
The rectified waveform no longer has a fundamental sinewave, so in the frequency spectrum it has 2'nd and higher even harmonics of the original fundamental. The reactance of the inductor cannot be specified as a single value, it must be evaluated for each harmonic.

The current is not a single AC sinewave, it is a DC current with even harmonic ripple. The ripple is an inverse function of the inductance. You will need to consider Vind = L * di/dt. Consider the extremes; If the inductance was zero, the current would be resistive and follow the voltage without delay. If the inductance was infinite the current would be pure DC, with the average RMS value.

All components must be specified before real waveforms can be simulated. You have not specified those values because they were not provided by your reference.
 
Hey guys. I have a question related to electricity and alternating current. Say an alien fictional society developed electricity, and settled on a standard like 73V AC current at 46 Hz. How would appliances be designed, and what impact would the lower frequency and voltage have on transformers, wiring, TVs, computers, LEDs, motors, and heating, assuming the laws of physics and technology are the same as on Earth?
While I was rolling out a shielded cable, a though came to my mind - what happens to the current flow in the cable if there came a short between the wire and the shield in both ends of the cable? For simplicity, lets assume a 1-wire copper wire wrapped in an aluminum shield. The wire and the shield has the same cross section area. There are insulating material between them, and in both ends there is a short between them. My first thought, the total resistance of the cable would be reduced...
I used to be an HVAC technician. One time I had a service call in which there was no power to the thermostat. The thermostat did not have power because the fuse in the air handler was blown. The fuse in the air handler was blown because there was a low voltage short. The rubber coating on one of the thermostat wires was chewed off by a rodent. The exposed metal in the thermostat wire was touching the metal cabinet of the air handler. This was a low voltage short. This low voltage...
Back
Top