Redshift and blueshift in relativistic doppler effect

qazadex
Messages
4
Reaction score
0
I'm looking for an intuitive explanation for the redshift and blueshift phenonema that occurs when a light ray is emitted transversely.

According to wikipedia:

Assuming the objects are not accelerated, light emitted when the objects are closest together will be received some time later, at reception the amount of redshift will be 1/γ.

Light received when the objects are closest together was emitted some time earlier, at reception the amount of blueshift is γ.

Now these expressions can be derived using this formula(a generalized version of the doppler shift):
\frac{\sqrt{1 - v^2/c^2}}{1+\frac{v}{c}\cos{\theta}}

However, I'm trying to understand based on the principles of time dilation. The redshift situation makes sense: because of time dilation, successive wavefronts arrive by a factor of λ slower according to the receiver, so the f' is 1/λ * f. However, this logic fails with the blueshifting. A way in which the blueshifting expression could be derived is by looking at the situation from the source of the light, and seeing waves get absorbed by a factor f γ slower, which would lead to the above expression for blueshifting. However, I'm not sure why these frames of reference would need to be chosen.

Any help would be appreciated.
 
Physics news on Phys.org
I think you already answered your own question. These are indeed just the time dilation factors as seen from either the source or the receiver points of view. The point is that the trajectory of the ray is perpendicular to the relative velocities between the frames. In the red shift case the trajectory is perpendicular from the point of view of the receiver while in the other case it is perpendicular from the point of view of the source. When the trajectory is perpendicular, Doppler effect is given by time dilation alone.
 
  • Like
Likes 1 person
qazadex said:
I'm looking for an intuitive explanation for the redshift and blueshift phenonema that occurs when a light ray is emitted transversely.

According to wikipedia:

Assuming the objects are not accelerated, light emitted when the objects are closest together will be received some time later, at reception the amount of redshift will be 1/γ.


I would say:

When the objects are closest together according to the receiver, then the amount of redshift will be 1/γ according to the receiver.

And that is because the reciever sees the distance staying constant at that point, so he observes the time dilation and nothing else.
 
Thanks for the answers: it makes pretty much perfect sense now.
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...

Similar threads

Replies
28
Views
3K
Replies
2
Views
2K
Replies
11
Views
3K
Replies
2
Views
3K
Replies
5
Views
3K
Replies
35
Views
6K
Back
Top