Reduction of Order Problem for Differential Equations Class

M87TJC
Messages
2
Reaction score
0
Homework Statement
Find second solution for differential equation using reduction of order (see first image)
Relevant Equations
equation labeled (5) in first image in addition to equation 1
Problem statement:
1633375237245.png

Second order linear differential equation in standard from
1633375439303.png

Reasoning:
1633376079966.jpeg
 

Attachments

  • 1633375118018.png
    1633375118018.png
    9 KB · Views: 172
  • 1633375502266.png
    1633375502266.png
    1.5 KB · Views: 134
Physics news on Phys.org
I just looked back at the original problem, and I realized that I did not put the equation into standard form. If I divide the equation by 4 and repeat the same process I get the correct answer.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top