Redundant degrees of freedom in EM fields?

AI Thread Summary
In electromagnetic (EM) fields, there are initially six degrees of freedom associated with the electric field (E) and magnetic field (B). However, Maxwell's equations relate E and B, allowing the reduction of degrees of freedom to four through the introduction of scalar and vector potentials. This results in two redundant degrees of freedom, which correspond to the polarization of EM waves and gauge symmetry. By applying the Lorenz gauge condition, the equations can be separated, leading to unique solutions when charge and current densities are present. Ultimately, with additional constraints, only two transverse polarization degrees of freedom remain, representing the helicity states of EM waves.
DOTDO
Messages
8
Reaction score
2
If we consider E and B individually, there are 6 total degrees of freedom.

But they are actually related to each other by Maxwell's equations.

So we can find potentials and reduce dof to 4; 3 in vector potential and 1 in scalar potential.
Thus, there remain 2 redundant dof.

This is the problem...

I think one of them gives the polarization of EM wave and the other gives the gauge symmetry.

For example, the vector potential has gauge symmetry, A' = A + del (f)

f is scalar and has one dof.

Am I understanding right ?
 
Last edited:
Physics news on Phys.org
There are 6 physical degrees of freedom, ##\vec{E}## and ##\vec{B}##. Indeed, the homogeneous Maxwell equations,
$$\vec{\nabla} \times \vec{E}+\frac{1}{c} \partial_t \vec{B}=0, \quad \vec{\nabla} \cdot \vec{B}$$
lead us to introduce the scalar and vector potentials ##\Phi## and ##\vec{A}##. The relation to the physical field is
$$\vec{E}=-\frac{1}{c} \partial_t \vec{A}-\vec{\nabla} \Phi, \quad \vec{B}=\vec{\nabla} \times \vec{A}.$$
The gauge symmetry makes everything invariant under the gauge transformations,
$$\vec{A}'=\vec{A} - \vec{\nabla} \chi, \quad \Phi'=\Phi+\frac{1}{c} \partial_t \chi$$
with an arbitrary scalar field ##\chi##. Thus we can pose one constraint in addition to the inhomogeneous Maxwell equations. If we choose the Lorenz-gauge condition,
$$\frac{1}{c} \partial_t \Phi + \vec{\nabla} \cdot \vec{A}=0,$$
the inhomogeneous Maxwell equations become separated
$$\Box \Phi=\rho, \quad \Box \vec{A}=\frac{1}{c} \vec{j}, \quad \frac{1}{c^2} \partial_t^2 - \Delta.$$
The entire system of Maxwell equations are only consistent, if electric charge is conserved,
$$\partial_t \rho+\vec{\nabla} \cdot \vec{j}=0.$$
It turns out that this fixing of the gauge with the Lorenz gauge makes the solutions to the wave equations unique if charge and current densities are present.

For the free Maxwell field that's not the case, but even with the Lorenz-gauge constraint you still have the freedom to change the gauge via a field obeying the source-free wave equation. Thus you have to use another constraint to fix the gauge completely. One convenient possibility is to demand
$$\Phi=0$$
in addition to the Lorenz condition. This means you have
$$\Phi=0, \quad \vec{\nabla} \cdot \vec{A}=0,$$
i.e., you have only two transverse field-degrees of freedom left. There are only 2 polarization degrees of freedom (e.g., helicity +1 and helicity -1 states, which is the same as left- and right-circular polarized waves).
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Back
Top