Relativistic calculation of speed when the momentum is known

Click For Summary
SUMMARY

The discussion focuses on the relativistic calculation of an electron's speed given its momentum of 1.48 x 10^-21 kg·m/s. The initial approach using classical mechanics leads to a speed exceeding the speed of light, necessitating the use of relativistic equations. The correct formula derived is v = (p*c) / √(m^2*c^2 + p^2), which accounts for relativistic effects. Participants detail the algebraic manipulation required to arrive at this equation from the momentum formula p = mv/√(1 - v^2/c^2).

PREREQUISITES
  • Understanding of relativistic physics concepts
  • Familiarity with the momentum formula p = mv
  • Knowledge of algebraic manipulation techniques
  • Basic comprehension of the speed of light as a universal constant (c)
NEXT STEPS
  • Study the derivation of the Lorentz transformation equations
  • Learn about relativistic momentum and energy relationships
  • Explore advanced algebra techniques for solving equations
  • Investigate applications of relativistic physics in particle physics
USEFUL FOR

Students and educators in physics, particularly those studying relativistic mechanics, as well as anyone interested in the mathematical foundations of momentum and speed in high-energy contexts.

Karagoz
Messages
51
Reaction score
5

Homework Statement


We know the momentum of an electron, which is: 1,48*10^-21.

Momentum is m*v (mass*speed)

If we divide the momentum by the mass of the electron to find electron's speed, it'll give a value where v> 3*10^8 m/s.

Since speed can't be above speed of light, we have to calculate it relativistic to find the speed of light of the electron.

Homework Equations



upload_2018-5-2_17-39-35.png

gives:
upload_2018-5-2_17-39-50.png


The Attempt at a Solution



With the formula above, the problem is easy to solve.

But I don't get how that formula is transformed.

When I try it, this is what I get:

p = mv/√(1 - v^2/c^2)

divide by m, and multiply by √(1 - v^2/c^2)

v = p/m * √(1 - v^2/c^2)

^2 both sides

v^2 = p^2/m^2 * (1 - v^2/c^2) = p^2/m^2 - (p^2*v^2)/(c^2*m^2)

making some changes so both have same divsor:

v^2 = (p^2*c^2)/(m^2*c^2) - (p^2*v^2)/(m^2*c^2)

How do they get the equation where:

v = (p*c) / √(p^2 + m^2*c^2)

??
 

Attachments

  • upload_2018-5-2_17-39-35.png
    upload_2018-5-2_17-39-35.png
    1.2 KB · Views: 377
  • upload_2018-5-2_17-39-50.png
    upload_2018-5-2_17-39-50.png
    1.1 KB · Views: 391
Physics news on Phys.org
Karagoz said:
v^2 = (p^2*c^2)/(m^2*c^2) - (p^2*v^2)/(m^2*c^2)
Collect together the terms that contain v2 and factor out the v2.
(The toolbar has a superscript tool.)
 
Start with your first Relevant equation and solve for v! Collect all the terms with v on one side, square everything to get rid of the square root, and solve for v2
 
Karagoz said:
We know the momentum of an electron, which is: 1,48*10^-21.
Also, remember that numbers are useless without appropriate units.
 
p = mv/√(1 - v^2/c^2)

p = mv/√(1 - v^2/c^2)

divide by m, and multiply by √(1 - v^2/c^2)

v = p/m * √(1 - v^2/c^2)

^2 both sides

v^2 = p^2/m^2 * (1 - v^2/c^2) = p^2/m^2 - (p^2*v^2)/(c^2*m^2)

making some changes on the right side so both have same divsor:

v^2 = (p^2*c^2)/(m^2*c^2) - (p^2*v^2)/(m^2*c^2)

This was where I left:

v^2 = (p^2*c^2)/(m^2*c^2) - (p^2*v^2)/(m^2*c^2)

Add + (p^2*v^2)/(m^2*c^2) on both sides.

v^2 + (p^2*v^2)/(m^2*c^2) = (p^2*c^2)/(m^2*c^2)

Get a common divisor on left side.

(v^2*m^2*c^2)/(m^2*c^2) + (p^2*v^2)/(m^2*c^2)

Simplify the left side

v^2(m^2*c^2 + p^2) / (m^2*c^2) = (p^2*c^2) / (m^2*c^2)

Multiply both sides by: (m^2*c^2)

v^2(m^2*c^2 + p^2) = (p^2*c^2)

divide by (m^2*c^2 + p^2)

v^2 = (p^2*c^2)/(m^2*c^2 + p^2)

SQROOT both sides:

v = (p*c) / √(m^2*c^2 + p^2)

v = (p*c) / √(p^2 + m^2*c^2)Do you know a more simplified way?
 
Last edited:
p/m = v / √(1 - v2 / c2)
p2 / m2 = v2 / (1 - v2 / c2) = 1 / (1/v2 - 1/c2)
(1/v2 - 1/c2) = m2 / p2
1/v2 = (m2 / p2) + (1/c2))
That separates the v to the left. Now take the lcm on the right hand side, invert, and take the square root.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 27 ·
Replies
27
Views
1K
Replies
1
Views
1K
Replies
14
Views
2K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
911
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 13 ·
Replies
13
Views
1K
Replies
335
Views
16K