andresordonez
- 65
- 0
SOLVED
(Problem 10, Chapter 2, Modern Physics - Serway)
Recall that the magnetic force on a charge q moving with velocity \vec{v} in a magnetic field \vec{B} is equal to q\vec{v}\times\vec{B}. If a charged particle moves in a circular orbit with a fixed speed v in the presence of a constant magnetic field, use the relativistic form of Newton's second law to show that the frequency of its orbital motion is
<br /> f=\frac{qB}{2\pi m}(1-\frac{v^2}{c^2})^{1/2}<br />
<br /> F=\frac{ma}{(1-v^2/c^2)^{3/2}}<br />
The particle moves in a circle then the magnetic field is perpendicular to the velocity and F=qvB.
<br /> f=\frac{v}{2\pi R}<br />
<br /> qvB=\frac{ma}{(1-v^2/c^2)^{3/2}}<br /> =\frac{m}{(1-v^2/c^2)^{3/2}}\frac{v^2}{R}<br />
<br /> R=\frac{mv}{(1-v^2/c^2)^{3/2}qB}<br />
<br /> f=\frac{(1-v^2/c^2)^{3/2}qB}{2\pi m}<br />
What's wrong?
(Problem 10, Chapter 2, Modern Physics - Serway)
Homework Statement
Recall that the magnetic force on a charge q moving with velocity \vec{v} in a magnetic field \vec{B} is equal to q\vec{v}\times\vec{B}. If a charged particle moves in a circular orbit with a fixed speed v in the presence of a constant magnetic field, use the relativistic form of Newton's second law to show that the frequency of its orbital motion is
<br /> f=\frac{qB}{2\pi m}(1-\frac{v^2}{c^2})^{1/2}<br />
Homework Equations
<br /> F=\frac{ma}{(1-v^2/c^2)^{3/2}}<br />
The Attempt at a Solution
The particle moves in a circle then the magnetic field is perpendicular to the velocity and F=qvB.
<br /> f=\frac{v}{2\pi R}<br />
<br /> qvB=\frac{ma}{(1-v^2/c^2)^{3/2}}<br /> =\frac{m}{(1-v^2/c^2)^{3/2}}\frac{v^2}{R}<br />
<br /> R=\frac{mv}{(1-v^2/c^2)^{3/2}qB}<br />
<br /> f=\frac{(1-v^2/c^2)^{3/2}qB}{2\pi m}<br />
What's wrong?
Last edited: