Relativistic scattering Lab and CM frames

trelek2
Messages
86
Reaction score
0
Hi!

I have the following problem:
Example: collision of 2 electrons
For non-relativistic scattering it is easy to show that the speed of the CM frame with respect to the lab frame is equal to the speed of the electrons in the CM frame, expoloiting the fact that in the lab frame, one of the electrons is at rest.

Now this also holds in the relativistic regime. I'm not really sure where does this follow from. Is it valid to take the lorentz velocity addition formula, and taking the speed of the particle in the lab frame to be 0 we see that for x-coordinate the speed of the electron in CM frame must then be uqual to to the speed of CM frame in lab frame. Saying that the lab and CM frames are in standard configuration makes this proof general enough?
 
Physics news on Phys.org
I think your proof is correct. What's different between the relativistic and nonrelativistic cases is that in the relativistic case, the velocities in the c.m. frame are not half the velocity of the projectile in the lab frame.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top