Remember Isomorphism Theorems: Intuition Guide

  • Thread starter Thread starter lion8172
  • Start date Start date
  • Tags Tags
    Isomorphism
lion8172
Messages
27
Reaction score
0
Does anybody know of a nice, intuitive way to remember the second and third isomorphism theorems?
 
Physics news on Phys.org
For the second, with hypothesis "If H,K<G, K<N_G(H), then blahblah", draw a picture. Then notice how it "makes sense" that K/(HnK) ~ HK/K, in the sense that HnK is to K what H is to HK.

The third is easy. It says that if N,M and normal in G and N is in M, then the "fraction" (G/N)/(M/N) can be "simplified": (G/N)/(M/N) ~ G/M.

Actally you just have to remember the formula (G/N)/(M/N) ~ G/M because for it to make any sense, we must have that N and M are normal in G and that N in in M, otherwise G/M, G/N and M/n are not defined.
 
For 2, draw the lattice - for groups it looks something like this:
Code:
     G
     |
    HK
   /  \\
  H    K
  \\  /
   H[itex]\cap[/itex]K
    |
   {1}
where I'm using \\ to indicate the isomorphism you get when you collapse the line \, namely HK/K =~ H/H\capK. (Note that when you collapse the other two lines, you get a corresponding statement about indices; what is it?)

For 3, remember how fractions work: (a/b)/(c/b) = a/c.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
Back
Top