kof9595995
- 676
- 2
The two sets of matrices:
{G_1} = i\hbar \left( {\begin{array}{*{20}{c}}<br /> 0 & 0 & 0 \\<br /> 0 & 0 & { - 1} \\<br /> 0 & 1 & 0 \\<br /> \end{array}} \right){\rm{ }}{G_2} = i\hbar \left( {\begin{array}{*{20}{c}}<br /> 0 & 0 & 1 \\<br /> 0 & 0 & 0 \\<br /> { - 1} & 0 & 0 \\<br /> \end{array}} \right){\rm{ }}{G_3} = i\hbar \left( {\begin{array}{*{20}{c}}<br /> 0 & { - 1} & 0 \\<br /> 1 & 0 & 0 \\<br /> 0 & 0 & 0 \\<br /> \end{array}} \right)
and
{J_1} = \frac{\hbar }{{\sqrt 2 }}\left( {\begin{array}{*{20}{c}}<br /> 0 & 1 & 0 \\<br /> 1 & 0 & 1 \\<br /> 0 & 1 & 0 \\<br /> \end{array}} \right){\rm{ }}{J_2} = \frac{{i\hbar }}{{\sqrt 2 }}\left( {\begin{array}{*{20}{c}}<br /> 0 & { - 1} & 0 \\<br /> 1 & 0 & { - 1} \\<br /> 0 & 1 & 0 \\<br /> \end{array}} \right){\rm{ }}{J_3} = \hbar \left( {\begin{array}{*{20}{c}}<br /> 1 & 0 & 0 \\<br /> 0 & 0 & 0 \\<br /> 0 & 0 & { - 1} \\<br /> \end{array}} \right)
They both satisfy the common commutation relation
[{L_i},{L_j}] = i\hbar {\varepsilon _{ijk}}{L_k} with L substituted by G or J
So both can be used to describe angular momentum. G is called the Cartesian basis representation and J is called spherical basis representation. This is absolutely new to me, so I want to acquire some general knowledge about it. For example, why are G and J named like that (Cartesian and spherical...), how are they related and so on. And any source of reference will be helpful.
{G_1} = i\hbar \left( {\begin{array}{*{20}{c}}<br /> 0 & 0 & 0 \\<br /> 0 & 0 & { - 1} \\<br /> 0 & 1 & 0 \\<br /> \end{array}} \right){\rm{ }}{G_2} = i\hbar \left( {\begin{array}{*{20}{c}}<br /> 0 & 0 & 1 \\<br /> 0 & 0 & 0 \\<br /> { - 1} & 0 & 0 \\<br /> \end{array}} \right){\rm{ }}{G_3} = i\hbar \left( {\begin{array}{*{20}{c}}<br /> 0 & { - 1} & 0 \\<br /> 1 & 0 & 0 \\<br /> 0 & 0 & 0 \\<br /> \end{array}} \right)
and
{J_1} = \frac{\hbar }{{\sqrt 2 }}\left( {\begin{array}{*{20}{c}}<br /> 0 & 1 & 0 \\<br /> 1 & 0 & 1 \\<br /> 0 & 1 & 0 \\<br /> \end{array}} \right){\rm{ }}{J_2} = \frac{{i\hbar }}{{\sqrt 2 }}\left( {\begin{array}{*{20}{c}}<br /> 0 & { - 1} & 0 \\<br /> 1 & 0 & { - 1} \\<br /> 0 & 1 & 0 \\<br /> \end{array}} \right){\rm{ }}{J_3} = \hbar \left( {\begin{array}{*{20}{c}}<br /> 1 & 0 & 0 \\<br /> 0 & 0 & 0 \\<br /> 0 & 0 & { - 1} \\<br /> \end{array}} \right)
They both satisfy the common commutation relation
[{L_i},{L_j}] = i\hbar {\varepsilon _{ijk}}{L_k} with L substituted by G or J
So both can be used to describe angular momentum. G is called the Cartesian basis representation and J is called spherical basis representation. This is absolutely new to me, so I want to acquire some general knowledge about it. For example, why are G and J named like that (Cartesian and spherical...), how are they related and so on. And any source of reference will be helpful.