Representing spin operators in alternate basis

pondzo
Messages
168
Reaction score
0

Homework Statement



I want to find the matrix representation of the ##\hat{S}_x,\hat{S}_y,\hat{S}_z## and ##\hat{S}^2## operators in the ##S_x## basis (is it more correct to say the ##x## basis, ##S_x## basis or the ##\hat{S}_x## basis?).

Homework Equations



$$\hat{S}^2|s,m_s\rangle=s(s+1)\hbar^2|s,m_s\rangle$$
$$\hat{S}_z|s,m_s\rangle=m_s\hbar|s,m_s\rangle$$
$$\hat{S}_x|s,m_s\rangle=\frac{1}{2}(\hat{S}_++\hat{S}_-)|s,m_s\rangle$$
$$\hat{S}_y|s,m_s\rangle=\frac{1}{2i}(\hat{S}_+-\hat{S}_-)|s,m_s\rangle$$
$$\hat{S}_{\pm}|s,m_s\rangle=\sqrt{s(s+1)-m_s(m_s \pm 1)}\hbar|s,m_s \pm 1\rangle$$

3. The Attempt at a Solution


Finding these in the ##S_z## basis is simple enough. All I need to do is investigate how the basis vectors ##\{|\frac{1}{2},\frac{1}{2}\rangle \equiv |\alpha\rangle, |\frac{1}{2},\frac{-1}{2}\rangle\equiv |\beta\rangle\}## transform under the action of the operator i wish to represent. Then the columns of the matrix become the image of the basis vectors under the operation. However, I'm not sure what the eigenvectors (basis vectors) of ##S_x## are. On top of that, the actions of the operators i have supplied would no longer apply in a different basis, would they? I would prefer to do it via this method rather than using a similarity transform if possible. Thanks.
 
Physics news on Phys.org
Would I do it by defining the operators as follows?

##\hat{S}^2|s,m_s\rangle=s(s+1)\hbar^2|s,m_s\rangle##
##\hat{S}_x|s,m_s\rangle=m_s\hbar|s,m_s\rangle##
##\hat{S}_+=\hat{S}_y+i\hat{S}_z##
##\hat{S}_-=\hat{S}_y-i\hat{S}_z##
Which both imply that:
##\hat{S}_y=\frac{1}{2}(\hat{S}_++\hat{S}_-)##
##\hat{S}_z=\frac{1}{2}(\hat{S}_+-\hat{S}_-)##

And with the basis vectors of ##S_y##, ##|\alpha\rangle## and ##|\beta\rangle## defined as before?
 
pondzo said:
the basis vectors ##\{|\frac{1}{2},\frac{1}{2}\rangle \equiv |\alpha\rangle, |\frac{1}{2},\frac{-1}{2}\rangle\equiv |\beta\rangle\}## t
Which eigenvectors are they, ##S_x##, ##S_y##, or ##S_z##?
pondzo said:
However, I'm not sure what the eigenvectors (basis vectors) of SxSxS_x are.
Find out ##S_x## in matrix form in the basis of the eigenvectors of ##S_z## (this is the most common form found in any literature) then find its eigenvalues as well as its eigenvectors (in the basis of the eigenvectors of ##S_z##).
pondzo said:
On top of that, the actions of the operators i have supplied would no longer apply in a different basis, would they?
The operator equations you wrote above are the action on an eigenvector of ##S_z##. Moreover, the forms of those equation are in the basis-free, operator forms, therefore no matter which basis you chose the form of the above equations will not change. However, if you redefine the notation ##|s,m_s\rangle## to be the eigenvector of ##S_x##, then those equations will indeed look different.
pondzo said:
I would prefer to do it via this method rather than using a similarity transform if possible. Thanks.
It's not clear to me which method you were referring to. To be honest, in matrix form I know no other way to transform a matrix from one basis into another one unless using the usual similarity transformation.
 
Last edited:
This belongs in the advanced physics forum IMO.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top