Residue Theorem: Show r1+r2 = Res(f1+f2, z0)

  • Thread starter Thread starter SNOOTCHIEBOOCHEE
  • Start date Start date
  • Tags Tags
    Residue Theorem
SNOOTCHIEBOOCHEE
Messages
141
Reaction score
0

Homework Statement



If f1 and f2 have residues r1 and r2 at z0. show that the residue of f1+ f2 is r1 + r2

The Attempt at a Solution



Res(f1, z0) = limz-->z0 (z-z0)f1(z) = r1
Res(f2, z0) = limz-->z0 (z-z0)f2(z) = r2

now calculate Res(f1+f2, z0)

=

limz-->z0 (z-z0)(f1(z)+ f2(z))
= limz-->z0 (z-z0)(f1(z))+(z-z0)(f2(z) = r1+ r2

Is it really this easy? i must be doing something wrong
 
Physics news on Phys.org
Pretty much, yeah. "Residue" is only defined for poles and a function has a pole at z_0 if and only if it can be expanded in a power series (a Laurent series) with a finite number of negative exponents. In that case the residue is the coefficient of z-1 (thus that limit formula you use). Adding the two functions, you can add the Laurent series term by term: a_1z^{-1}+ a_2z^{-2}= (a_1+ a_2)z^{-1}. The residues add.
 
Thanks halls.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top