Resultant gravitational field strength

Chicken99
Messages
1
Reaction score
0

Homework Statement



Consider the objects X and Y, each of mass 8000kg and 2000m apart where XYP forms an equilateral triangle. Determine the resultant gravitational field strength at point P due to objects X and Y.

Homework Equations



G= GM/R^2

The Attempt at a Solution

 
Physics news on Phys.org
Welcome to PF;
To get the most out of these forums you should show your attempt at the solution - even if you are just talking about your thinking. That way we can target our assistance.

In this case, the place to start is to draw the situation, then draw in the force vectors.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top