Rings of Fractions .... Lovett, Section 6.2, Proposition 6.2.6 .... ....

Click For Summary
SUMMARY

The discussion focuses on Proposition 6.2.6 from Stephen Lovett's "Abstract Algebra: Structures and Applications," specifically regarding the application of the First Isomorphism Theorem to establish that the ring \( R \) is isomorphic to the image of the function \( \phi \). Participants clarify that while \( \phi \) is injective as stated in Lemma 6.2.5, the First Isomorphism Theorem is necessary to rigorously confirm the isomorphism between \( R \) and \( \text{Im } \phi \). The discussion emphasizes that a surjective map alone does not guarantee isomorphism, reinforcing the theorem's importance in this context.

PREREQUISITES
  • Understanding of the First Isomorphism Theorem in ring theory
  • Familiarity with injective functions and their properties
  • Knowledge of subrings and their relationships to larger rings
  • Basic concepts of isomorphism in abstract algebra
NEXT STEPS
  • Study the First Isomorphism Theorem in detail, focusing on its implications in ring theory
  • Review Lemma 6.2.5 and its role in establishing injectivity of functions
  • Explore examples of surjective maps that are not isomorphic to their codomains
  • Investigate the concept of subrings and their significance in the context of ring homomorphisms
USEFUL FOR

Students and educators in abstract algebra, particularly those studying ring theory and the properties of homomorphisms. This discussion is beneficial for anyone seeking to deepen their understanding of isomorphisms and the application of the First Isomorphism Theorem.

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Stephen Lovett's book, "Abstract Algebra: Structures and Applications" and am currently focused on Section 6.2: Rings of Fractions ...

I need some help with the proof of Proposition 6.2.6 ... ... ...

Proposition 6.2.6 and its proof read as follows:
View attachment 6465
View attachment 6466In the above proof by Lovett we read the following:

" ... ... By Lemma 6.2.5, the function $$\phi$$ is injective, so by the First Isomorphism Theorem, $$R$$ is isomorphic to $$\text{Im } \phi$$. ... ... "
*** NOTE *** The function $$\phi$$ is defined in Lemma 6.2.5 which I have provided below ... ..
My questions are as follows:Question 1

I am unsure of exactly how the First Isomorphism Theorem establishes that $$R$$ is isomorphic to $$\text{Im } \phi$$.

Can someone please show me, rigorously and formally, how the First Isomorphism Theorem applies in this case ... Question 2

I am puzzled as to why the First Isomorphism Theorem is needed in the first place as $$\phi$$ is an injection by Lemma 6.2.5 ... and further ... obviously the map of $$R$$ to $$\text{Im } \phi$$ is onto, that is a surjection ... so $$R$$ is isomorphic to $$\text{Im } \phi$$ ... BUT ... why is Lovett referring to the First Isomorphism Theorem ... I must be missing something ... hope someone can clarify this issue ...Peter===================================================

In the above, Lovett refers to Lemma 6.2.5 and the First Isomorphism Theorem ... so I am providing copies of both ...Lemma 6.2.5 reads as follows:
https://www.physicsforums.com/attachments/6467
The First Isomorphism Theorem reads as follows:
https://www.physicsforums.com/attachments/6468
 
Physics news on Phys.org
Peter said:
Question 1

I am unsure of exactly how the First Isomorphism Theorem establishes that $$R$$ is isomorphic to $$\text{Im } \phi$$.

Can someone please show me, rigorously and formally, how the First Isomorphism Theorem applies in this case ...
Since $\phi$ is injective, its kernel is trivial, and hence $R \approx \text{Im } \phi$ by the first isomorphism theorem. Perhaps you're forgetting that $R/{0} \approx R$.

Peter said:
Question 2

I am puzzled as to why the First Isomorphism Theorem is needed in the first place as $$\phi$$ is an injection by Lemma 6.2.5 ... and further ... obviously the map of $$R$$ to $$\text{Im } \phi$$ is onto, that is a surjection ... so $$R$$ is isomorphic to $$\text{Im } \phi$$ ... BUT ... why is Lovett referring to the First Isomorphism Theorem ... I must be missing something ... hope someone can clarify this issue ...
Having a surjection from one ring onto another does not imply that the rings are isomorphic. The image of $\phi$ is a subring of $D^{-1}R$, and is also isomorphic to $R$ by the first isomorphism theorem. So the first conclusion of Proposition 6.2.6 holds.
 
Euge said:
Since $\phi$ is injective, its kernel is trivial, and hence $R \approx \text{Im } \phi$ by the first isomorphism theorem. Perhaps you're forgetting that $R/{0} \approx R$.

Having a surjection from one ring onto another does not imply that the rings are isomorphic. The image of $\phi$ is a subring of $D^{-1}R$, and is also isomorphic to $R$ by the first isomorphism theorem. So the first conclusion of Proposition 6.2.6 holds.
Thanks Euge ...

Appreciate your helpPeter
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K