- 6,221
- 31
Considering the roots of a cubic polynomial(ax^3+bx^2+cx+d),\alpha,\beta,\gamma
\sum \alpha=\frac{-b}{a}
\sum \alpha\beta=\frac{c}{a}
\sum \alpha\beta\gamma=\frac{-d}{a}
If I have those sums of roots..and I am told to find \alpha^9+\beta^9+\gamma^9[/tex] is there any easy way to find this without having to expand?<br /> <br /> and also for a quartic polynomial<br /> when I expand (x-\alpha)(x-\beta)(x-\gamma)(x-\delta)<br /> I get:<br /> x^4-(\alpha+\beta+\alpha\gamma+\beta\gamma+\alpha\delta+\beta\gamma)x^3+(\alpha\beta+\gamma\delta+\alpha\gamma+\beta\gamma+\alpha\delta+\beta\delta)x^2 -(\alpha\beta\gamma+\alpha\beta\delta+\alpha\gamma\delta+\gamma\delta\beta)x+\alpha\beta\gamma\delta<br /> for -x^3 I am supposed to get the sum of the roots...yet I expanded correctly, where did i go wrong?
\sum \alpha=\frac{-b}{a}
\sum \alpha\beta=\frac{c}{a}
\sum \alpha\beta\gamma=\frac{-d}{a}
If I have those sums of roots..and I am told to find \alpha^9+\beta^9+\gamma^9[/tex] is there any easy way to find this without having to expand?<br /> <br /> and also for a quartic polynomial<br /> when I expand (x-\alpha)(x-\beta)(x-\gamma)(x-\delta)<br /> I get:<br /> x^4-(\alpha+\beta+\alpha\gamma+\beta\gamma+\alpha\delta+\beta\gamma)x^3+(\alpha\beta+\gamma\delta+\alpha\gamma+\beta\gamma+\alpha\delta+\beta\delta)x^2 -(\alpha\beta\gamma+\alpha\beta\delta+\alpha\gamma\delta+\gamma\delta\beta)x+\alpha\beta\gamma\delta<br /> for -x^3 I am supposed to get the sum of the roots...yet I expanded correctly, where did i go wrong?