Rotational inertia of truck and trailer

AI Thread Summary
To compute the energy required to accelerate a truck and trailer from 0 to 60 mph, both the mass and rotational inertia of the wheels and rims must be considered. The wheels can be approximated with an inertia of I = 0.8mR², and the kinetic energy contribution from the wheels is calculated as KE = (36/5)mv². This energy is added to the translational kinetic energy of the truck and trailer, resulting in a total kinetic energy formula of kE tot = (1/2)Mv² + (36/5)mv². The weight of the wheels is noted to be around 200 pounds for steel rims and 170 pounds for aluminum rims. Understanding these calculations is crucial for accurate energy assessments in vehicle dynamics.
CH_GR
Messages
3
Reaction score
0
I need to compute the energy to get a truck and trailer from 0 to 60 mph from rest taking into account the mass of truck and trailer and inertia of wheels and rims.

Do I treat the rims and tires as a cylindrical shell or solid cylinder? Once I find the energy of the tires and rims do I just add that to the 1/2MV^2 for truck and trailer?

thanks.
 
Physics news on Phys.org
The moment of inertia of a cylindrical shell is mR2, while the solid cylinder is (1/2)mR2. The wheels are about 0.8mR2. For an automobile, the rolling tires add about 4% to the dynamic mass e.g., kinetic energy KE = (1/2)(1.04) mv2, where m is the static mass.
 
By wheel you mean tire and rim? Then I could use 0.8MR^2 to approximate the inertia instead of treating it separately as cylindrical shell and solid shell?

Does this approximation apply to all passenger car and truck tires?

thanks.
 
Yes, the tire and rim together are about I = 0.8 mR2. The 18 tires plus rims (=wheels) are only a small percentage (<5%) of total truck & trailer mass.
So the kinetic energy of a wheel is
KE = (1/2) I w2 = (1/2)(0.8)m (Rw)2 = (2/5) mv2 (rotational energy only)
For 18 wheels it is
KE = (36/5)mv2
This gets added to the total vehicle kinetic energy:
kE tot = (1/2)Mv2 + (36/5) mv2
How much do the wheels weigh (mg)? 200 pounds?
 
The wheels weigh 200 lbs for steel rims and 170 lbs for aluminum rims.

Thanks for the info.
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Hello everyone, Consider the problem in which a car is told to travel at 30 km/h for L kilometers and then at 60 km/h for another L kilometers. Next, you are asked to determine the average speed. My question is: although we know that the average speed in this case is the harmonic mean of the two speeds, is it also possible to state that the average speed over this 2L-kilometer stretch can be obtained as a weighted average of the two speeds? Best regards, DaTario
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Back
Top