Rotational Kinetic Energy and distribution of diatomic molecules

merbear
Messages
9
Reaction score
0
[SOLVED] Rotational Kinetic Energy and distribution of diatomic molecules

a) Calculate the total rotational kinetic energy of the molecules in 1.00 mol of a diatomic gas at 300 K.

b) Calculate the moment of inertia of an oxygen molecule (O2) for rotation about either the x- or y-axis shown in the figure. Treat the molecule as two massive points (representing the oxygen atoms) separated by a distance 1.21×10-10m. The molar mass of oxygen atoms is 16 g/mol.


c) Find the rms angular velocity of rotation of an oxygen molecule about either an x- or y-axis



Homework Equations



kT=2/3*<k>

where, k is boltzman constant and K is kinetic energy

I=mR^2

E(rot)= 1/2*I*angular velocity(for x)^2 + 1/2*I*angular velocity(for y)^2


The Attempt at a Solution



To find the answer to the first part of the problem I used the first equation listed and got 6.21E-21 J, but that answer is incorrect. I do not know how else to approach the problem. I think it went wrong because K in that equation is the average kinetic energy and not the rotational kinetic energy, but I couldn't find another equation that would work.

For the second part I used I=mR^2. To find m, I took the molar mass and divided by avagadros number and I used the distance given for R.

my answer was: 3.89E-46 kg*m^2, but I don't think that was correct.

For the third part, I would think that you would use Vrms equals the squareroot of (3kT/m). But we are not given the temperature. So I don't know how to go about this part either.

I would really appreciate help on these three parts. Thank you!
 

Attachments

  • 64999.jpg
    64999.jpg
    10.6 KB · Views: 1,533
Physics news on Phys.org
merbear said:
To find the answer to the first part of the problem I used the first equation listed and got 6.21E-21 J, but that answer is incorrect. I do not know how else to approach the problem. I think it went wrong because K in that equation is the average kinetic energy and not the rotational kinetic energy, but I couldn't find another equation that would work.
Look up the equipartion theorem. How many rotational degrees of freedom are there for a diatomic molecule?

For the second part I used I=mR^2. To find m, I took the molar mass and divided by avagadros number and I used the distance given for R.
What's the rotational inertia of a point mass? mR^2. But m must equal the mass of each atom and R the distance to the center. And you have two atoms, of course.

For the third part, I would think that you would use Vrms equals the squareroot of (3kT/m). But we are not given the temperature. So I don't know how to go about this part either.
Again, you are dealing with rotational motion here, so consider the answer to part 1. And the rotational KE is 1/2 I \omega^2. I would assume the temperature is that given in part 1. (These questions all relate to the same situation.)
 
Still confused about Rotational Kinetic Energy and angular velocity

I was able to figure our the moment of inertia by using the equation I= 2mL^2

However, I tried Part A and C and I still can't figure it out.

For finding the rotational kinetic energy I used:

K(rot)= (f/2)*kT

When solving using f= 2 for the degrees of freedom, boltzman constant for k, and 300 K for temperature I get 4.14E-21 J. But when I input that into the program it comes up incorrect.

For part C, I think I am getting it wrong still because I am using an incorrect value for K(rot). I am using the equation: K(rot) = 1/2 I w^2.

Please let me know why my approach to part A was incorrect.

Thank you
 
For one thing, you are calculating the rotational energy per molecule, but the question asks for it per mole.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top