Rotational kinetic energy of a solid disk

AI Thread Summary
The discussion centers on the equations for calculating the rotational kinetic energy of a solid disk and the moment of inertia. The correct formula for kinetic energy is identified as Kinetic Energy = 1/2 * I * w^2, where I is the moment of inertia and w is the rotational velocity. The moment of inertia for various shapes is clarified, with the solid disk having an inertial constant of k = 1/2. The conversation also emphasizes the importance of correctly interpreting the notation for angular velocity and converting RPM to radians per second for accurate calculations. Overall, the formulas discussed are confirmed as valid for calculating the kinetic energy of a flywheel.
gfhfgh
Messages
5
Reaction score
0
Hi,
on the net I found some equation, and would like to know if they are correct ones.


http://www.upei.ca/~physics/p261/projects/flywheel1/flywheel1.htm
http://hyperphysics.phy-astr.gsu.edu/hbase/rke.html

Physics:
Stored energy = sum of kinetic energy of individual mass elements that comprise the flywheel
Kinetic Energy = 1/2*I*w2 , where
I = moment of inertia (ability of an obeject to resist changes in its rotational velocity)
w = rotational velocity (rpm)
I = k*M*R2 (M=mass; R=radius); k = inertial constant (depends on shape)
Inertial constants for different shapes:
Wheel loaded at rim (bike tire); k = 1
solid disk of uniform thickness; k = 1/2
solid sphere; k = 2/5
spherical shell; k = 2/3
thin rectangular rod; k = 1/2


But I searched for that "I" (inertia momentum) on the Wiki http://en.wikipedia.org/wiki/Moment_of_inertia and there is not like it say above "I=k*m*w2"
 
Physics news on Phys.org
gfhfgh said:
Hi,
on the net I found some equation, and would like to know if they are correct ones.


http://www.upei.ca/~physics/p261/projects/flywheel1/flywheel1.htm
http://hyperphysics.phy-astr.gsu.edu/hbase/rke.html

Physics:
Stored energy = sum of kinetic energy of individual mass elements that comprise the flywheel
Kinetic Energy = 1/2*I*w2 , where
I = moment of inertia (ability of an obeject to resist changes in its rotational velocity)
w = rotational velocity (rpm)
I = k*M*R2 (M=mass; R=radius); k = inertial constant (depends on shape)
Inertial constants for different shapes:
Wheel loaded at rim (bike tire); k = 1
solid disk of uniform thickness; k = 1/2
solid sphere; k = 2/5
spherical shell; k = 2/3
thin rectangular rod; k = 1/2


But I searched for that "I" (inertia momentum) on the Wiki http://en.wikipedia.org/wiki/Moment_of_inertia and there is not like it say above "I=k*m*w2"

Nowhere "above" does it say "I=k*m*w2."

It says I=k*m*R2, apparently meaning
<br /> I=kmR^2<br />
where m is the total mass of the object and R its size, with k being different for differently shaped objects.

There is a more general definition of moment of inertia which you may have found on Wikipedia in terms of a "Moment of inertia tensor." The values of I listed above are the diagonal entries of that tensor.
 
I can't find the formula you refer to on Wikipedia, but the formulae you quote from the other websites are indeed correct.
 
I would be cautious about saying that, for example

Kinetic Energy = 1/2*I*w2

was correct, as a reader (or perhaps even the original poster might) confuse w2 with w*2 as opposed to w^2, i.e. w*w.

Presumably this was a cut and paste job, and the '^' didn't cut and paste. Still, it's a potential source of confusion.

In any event, one can conclude, correctly, that for an object of fixed shape rotating around a fixed axis, rotational kinetic energy is proportional to w^2, where w is the angular frequency, which seems to be the point of the question if I'm understanding it correctly.
 
olgranpappy said:
Nowhere "above" does it say "I=k*m*w2."

yes, my mistake I was in a hurry!

so if I am calculating the flywheel kinetic energy this formula will be correct;
Wk=m*r^2*rpm^2/4
 
gfhfgh said:
yes, my mistake I was in a hurry!

so if I am calculating the flywheel kinetic energy this formula will be correct;
Wk=m*r^2*rpm^2/4

The kinetic energy in the flywheel will be

E = (some constant) * (rpm)^2

But it will take more work to get "some constant" right.

http://hyperphysics.phy-astr.gsu.edu/hbase/tdisc.html

says that

E = (1/2) m r^2 * w^2 when w is measured in radians per second.

If you are using MKS (standard metric) units, E will be in joules, m will be the mass of the flywheel in kg, r will be the radius of the flywheel in meters, and w will be the angular velocity in radians/second.

To convert rpm to radians per second, you'd take

(revolutions / minute) x (2 pi radians / revolution) x (1 minute) / (60 seconds)

i.e w (rad/sec) = (rpm)*(2*pi) / (60)
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Hello everyone, Consider the problem in which a car is told to travel at 30 km/h for L kilometers and then at 60 km/h for another L kilometers. Next, you are asked to determine the average speed. My question is: although we know that the average speed in this case is the harmonic mean of the two speeds, is it also possible to state that the average speed over this 2L-kilometer stretch can be obtained as a weighted average of the two speeds? Best regards, DaTario
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Back
Top