Rotor Analysis -- Big deformation problem

AI Thread Summary
The rotor analysis using modal analysis in Ansys shows excessive deformation values, which may be attributed to mass-normalized values rather than actual physical displacements. The discussion clarifies that modal analysis provides eigenvectors, where absolute magnitudes are not meaningful without specified excitation conditions. The analysis of an ideal rotor does not yield a definitive vibration amplitude, as it remains indeterminate without initial or boundary conditions. The conversation emphasizes that real systems include damping, which affects the transient solutions. Understanding these principles is crucial for interpreting modal analysis results accurately.
Stef
Messages
3
Reaction score
0
Hi everyone,
i am currently doing a rotor analysis with "modal analysis" on Ansys and even though my rotor's specs are L=145mm D=10mm and the rotating velocity is 10000rpm i get a deformation of 100mm at most of the modes. I have read that this might be cause of a mass-normalized value but i am not sure if that's the case. Does anyone know why is this happening and if so, can i change it so i can see the real value?
Thanks in advance.
 

Attachments

  • Capture.PNG
    Capture.PNG
    60.2 KB · Views: 467
Engineering news on Phys.org
Modal analysis only gives you the eigenvectors. The absolute magnitudes mean nothing at all, only the relative magnitudes are significant. I suspect that this is what you are seeing; I've seen it myself with FEA modal analysis.
 
Yes it looks like it. Maybe I have to use some other way. Thank you anyway.
 
You speak of wanting to see the "real value." The difficulty with that is that there is no "real value" until you specify the excitation. As long as you analyze an ideal, perfectly balanced rotor, there is not way to evaluate the vibration amplitude; it is indeterminate.

Consider a simple example to clarify this situation. Consider a mass M on a spring with constant K, with position described by x. The equation of motion is
M*DDx + K*x = 0
where D = d/dt.
As you know, the solution is x = A*cos(omega_n*t) + B*sin(omega_n*t)
where
omega_n^2 = K/M
But, and this is the point, A and B cannot be determined without initial or boundary conditions. The solution just described is called the transient (homogeneous) solution. You may wonder why it is called the transient solution when it clearly persists forever.

In the discussion above, damping was omitted, but in all real systems, damping is present. The inclusion of positive damping of any type (viscous, V^2, dry friction, hysteretic, etc) will cause this solution to disappear as the time becomes large.

Now, if we put an excitation term on the right side of the equation, the steady state (particular) solution will have a definite amplitude, but the homogeneous solution is still of undefined amplitude. In many cases, we simply say that enough time has elapsed to cause the transient to disappear.
 
That was very helpful thank you very much for your explanation. Have a nice day.
 
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Thread 'What's the most likely cause for this carbon seal crack?'
We have a molded carbon graphite seal that is used in an inline axial piston, variable displacement hydraulic pump. One of our customers reported that, when using the “A” parts in the past, they only needed to replace them due to normal wear. However, after switching to our parts, the replacement cycle seems to be much shorter due to “broken” or “cracked” failures. This issue was identified after hydraulic fluid leakage was observed. According to their records, the same problem has occurred...

Similar threads

Back
Top