Sakurai 2.17 - More elegant solution help?

  • Thread starter Thread starter Domnu
  • Start date Start date
  • Tags Tags
    Sakurai
Domnu
Messages
176
Reaction score
0
Problem

Show for the one-dimensional simple harmonic oscillator

\langle 0 | e^{ikx} | 0 \rangle = \exp{[-k^2 \langle 0 | x^2 | 0 \rangle / 2]}

where x is the position operator (here, k is a number, not an operator, with dimensions 1/length).

My Solution

Well, I already know how to do this problem, but my solution isn't as clean. I was searching for a more elegant solution. Here's the outline to my solution:

1. We know that e^{ikx}|p'\rangle = |p' + \hbar k\rangle (pretty simple to prove).
2. We can show that
\langle 0 |e^{ikx}| 0 \rangle = \int dp' \langle 0|p' \rangle \langle p'-\hbar k | 0 \rangle​
by putting everything in the momentum basis.
3. We then just need to find the harmonic oscillator's ground state in the momentum representation, which is just a Fourier transform of the ground state in the position representation.
4. Substitute into the thing got in #2 and compute away, leading to the equality. (and this works, after expanding everything)

As we can see, computing the Fourier transform in step 3 and computing everything in step 4 takes some time, and isn't exactly the "winning" solution.:smile: So would someone help me find or post a more elegant solution?
 
Physics news on Phys.org
I don't know if this is more elegant or not, but ...

1) Expand in powers of k.
2) Note that expectation value of odd powers of x is zero, because the ground-state wave function is an even function of x.
3) Prove that

\langle x^{2n}\rangle = (2n{-}1)!\,\langle x^2\rangle^n.

Useful identify for the proof:

\int_{-\infty}^{+\infty}dx\;x^{2n}e^{-cx^2}=\left(-{d\over dc}\right)^{\!n}\int_{-\infty}^{+\infty}dx\;e^{-cx^2}.

4) Resum the series.
 
Wow... number three seems to be pretty useful! This was actually my initial first approach... I found a really neat analog to the Catalan numbers, but wasn't able to complete it. I'll go and try out this approach. Thanks a lot for the help :smile:
 
In quantum field theory #3 is known as Wick's theorem.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top