Bill Foster said:
I find out what is \textbf{S}\cdot\hat{\textbf{n}}
I get the following:
\textbf{S}\cdot\hat{\textbf{n}}=\left(S_x\hat{\textbf{x}}+S_y\hat{\textbf{y}}+S_z\hat{\textbf{z}}\right)\cdot\left(\sin{\theta}cos{\phi}\hat{\textbf{x}}+\sin{\theta}\sin{\phi}\hat{\textbf{y}}+\cos{\theta}\hat{\textbf{z}}\right)=S_x\cos{\phi}+S_y\sin{\phi}
S_x=\frac{\hbar}{2}\left(|+\rangle\langle -| + |-\rangle\langle +|\right)
S_y=\frac{i\hbar}{2}\left(|-\rangle\langle +|-|+\rangle\langle -|\right)
So
\textbf{S}\cdot\hat{\textbf{n}}=\frac{\hbar}{2}\left(|+\rangle\langle -| + |-\rangle\langle +|\right)\cos{\phi}+\frac{i\hbar}{2}\left(|-\rangle\langle +|-|+\rangle\langle -|\right)\sin{\phi}
=\frac{\hbar}{2}\left(|+\rangle\langle -| + |-\rangle\langle +|\right)\cos{\phi}-i\left(|+\rangle\langle -|-|-\rangle\langle +|\right)\sin{\phi}
My copy of Sakurai has \mathbf{\hat{n}} lying in the xz-plane, making an angle \gamma with the postive z-axis
\implies\mathbf{\hat{n}}=\sin\gamma\mathbf{\hat{x}}+\cos\gamma\mathbf{\hat{z}}
Since the system is in an eigenstate of \textbf{S}\cdot\hat{\textbf{n}} with eigenvalue of \frac{\hbar}{2} it has to satisfy this equation:
\textbf{S}\cdot\hat{\textbf{n}}|\textbf{S}\cdot\hat{\textbf{n}};+\rangle=\frac{\hbar}{2}|\textbf{S}\cdot\hat{\textbf{n}};+\rangle
I understand everything up to here. I want to know why it has to satisfy that last equation. I know the definition of the eigenvalue. I want to know why |\textbf{S}\cdot\hat{\textbf{n}};+\rangle is the eigenvector.
Or to put it another way, why isn't |\textbf{S}\cdot\hat{\textbf{n}};-\rangle the eigenvector? Or why isn't |\textbf{S}\cdot\hat{\textbf{n}}\rangle the eigenvector?
|\textbf{S}\cdot\hat{\textbf{n}};+\rangle is
defined as the eigenstate of \textbf{S}\cdot\hat{\textbf{n}}, with corresponding eigenvalue of \frac{\hbar}{2} (In
its eigenbasis!), and |\textbf{S}\cdot\hat{\textbf{n}};-\rangle is defined as the eigenstate of \textbf{S}\cdot\hat{\textbf{n}}, with corresponding eigenvalue of -\frac{\hbar}{2}
So, if the system is known to be in an eigenstate of \textbf{S}\cdot\hat{\textbf{n}} with corresponding eigenvalue \frac{\hbar}{2}, then it must be in the state |\textbf{S}\cdot\hat{\textbf{n}};+\rangle. (If it were instead known to be in an eigenstate of \textbf{S}\cdot\hat{\textbf{n}} with corresponding eigenvalue -\frac{\hbar}{2}, then it would be in the state |\textbf{S}\cdot\hat{\textbf{n}};-\rangle)
Also, writing |\textbf{S}\cdot\hat{\textbf{n}}\rangle makes absolutely no sense. As I said earlier, \textbf{S}\cdot\hat{\textbf{n}} is an operator, not a state; so writing it inside a Ket like this makes no sense.
Bill Foster said:
Also, if we skip to the end of the problem, put another way, the probability of getting \frac{\hbar}{2} when S_x is measured is given by
|\langle S_x;+|\textbf{S}\cdot\hat{\textbf{n}};+\rangle|^2
Why is it that instead of this:
|\langle S_x|\textbf{S}\cdot\hat{\textbf{n}}\rangle|^2
?
Well, the initial state of the system is |\psi_i\rangle=|\textbf{S}\cdot\hat{\textbf{n}};+\rangle. If S_x is measured, and the result is \frac{\hbar}{2}, what will the final state|\psi_f\rangle of the system be? What is the probability of this outcome? (If you can't immediately answer these question, you need to re-read section 1.4 of Sakurai!)