Schrodinger equation for a weird potential

Click For Summary
The discussion revolves around solving the Schrödinger equation for a specific potential given by U(x) = U1/(1+e^(x/a))^2 - U2/(1+e^(x/a)). The user is attempting to find the energies and wave functions for bound states but is struggling with the behavior of the wave function's derivatives as w approaches 1. They have derived a form of the equation that leads to Euler's differential equation for large w, yielding a solution of Ψ(w) = (w-1)^(-k). However, they express uncertainty about handling the first and second derivatives at w = 1, particularly regarding the normalization of the wave function if the derivatives are infinitely large. The discussion highlights the challenges in analyzing the boundary conditions and the implications for the wave function's behavior.
mixo1234
Messages
4
Reaction score
0
Hello everyone,

I have this weirdo potential for homework

\begin{equation}
U(x) = \frac{U_1}{ \left( 1+e^{x/a}\right)^2 } - \frac{U_2}{ \left( 1+e^{x/a}\right)}
\end{equation}

where U1,U2 and "a" are positive

and I need to find the energies for the bound states and also the wave functions for them. I got stuck on one part for like 2 or 3 hours, tried tons of ways, but still nothing. So I'll post the most relevant way by far and I'm hoping to get some help from you. By the way, If anyone knows the name of this potential or some kind of a book (I prefer English, Russian or German, but any other language would do :D ) where I can get some help, please tell me. I looked up in Landau, Flugge and Greiner but couldn't find anything that could help...

So here it goes:

The Schrodinger equation looks like this:

\begin{equation}
-\frac{\hbar^2}{2m}\frac{d^2\Psi(x)}{dx^2} + \left(\frac{U_1}{ \left( 1+e^{x/a}\right)^2 } - \frac{U_2}{ \left( 1+e^{x/a}\right)}\right)\Psi(x)=E\Psi(x),
\end{equation}

For the Bound states we have E=-|E|. Using these following notations:
\begin{equation}w=1+e^{x/a},\end{equation}
\begin{equation}\frac{2ma^2U_1}{\hbar^2} = \alpha^2, \end{equation}
\begin{equation} \frac{2ma^2U_2}{\hbar^2} = \beta^2, \end{equation}
and
\begin{equation} \frac{2ma^2|E|}{\hbar^2} = k^2\end{equation}
I get

\begin{equation}
(w-1)^2 \Psi''(w) + (w-1) \Psi'(w) -\left(\frac{\alpha^2}{w^2} - \frac{\beta^2}{w} + k^2 \right) \Psi(w)
\end{equation}

and \begin{equation} 1<w< \infty \end{equation}.

When \begin{equation} w \to \infty \end{equation}, then the equation is

\begin{equation}
(w-1)^2 \Psi''(w) + (w-1) \Psi'(w) - k^2 \Psi(w)=0
\end{equation}
This is Eulers differential equation and the solution is \begin{equation} \Psi(w) = (w-1)^{-k} \end{equation}.

So here is the problem... When
\begin{equation} w \to 1 \end{equation}
then I can clearly say that

\begin{equation}
\frac{\alpha^2}{w^2} - \frac{\beta^2}{w} = \alpha^2 - \beta^2
\end{equation},
but I have no idea what should I do about the first and the second derivative. Any ideas?








 
Last edited:
Physics news on Phys.org
If w is going to 1, then you don't have to worry about the derivatives because the coefficients both go to zero.
 
Yes that would be true if we where guaranteed that both derivatives are not infinitely large.. or are we :D I have no idea what should i do at this point
 
I don't know how you'd get an infinitely large derivative at a point without the wavefunction being asymptotically large. Ψ*Ψ has to be a positive number less than 1. Don't know if you could normalize a wavefunction with an infinite derivative at a point.
 
At first, I derived that: $$\nabla \frac 1{\mu}=-\frac 1{{\mu}^3}\left((1-\beta^2)+\frac{\dot{\vec\beta}\cdot\vec R}c\right)\vec R$$ (dot means differentiation with respect to ##t'##). I assume this result is true because it gives valid result for magnetic field. To find electric field one should also derive partial derivative of ##\vec A## with respect to ##t##. I've used chain rule, substituted ##\vec A## and used derivative of product formula. $$\frac {\partial \vec A}{\partial t}=\frac...
Thread 'Conducting Sphere and Dipole Problem'
Hi, I'm stuck at this question, please help. Attempt to the Conducting Sphere and Dipole Problem (a) Electric Field and Potential at O due to Induced Charges $$V_O = 0$$ This potential is the sum of the potentials due to the real charges (##+q, -q##) and the induced charges on the sphere. $$V_O = V_{\text{real}} + V_{\text{induced}} = 0$$ - Electric Field at O, ##\vec{E}_O##: Since point O is inside a conductor in electrostatic equilibrium, the electric field there must be zero...