SoggyBottoms
- 53
- 0
Homework Statement
Consider the infinite well, a particle with mass m in the potential
V(x) =<br /> \begin{cases}<br /> 0, & 0 < x < a,\\<br /> \infty, & \text{otherwise,}<br /> \end{cases},<br />
At t = 0 the particle is in the state:
\Psi(x,0) = B \left[\sin{\left(\frac{l \pi}{a}x\right)} + b\sin{\left(\frac{2l \pi}{a}x\right)}\right]
with b a real number and l a whole number. Use normalization to show how B depends on b.
1 = B^2 \int_0^a \left[\sin{\left(\frac{l \pi}{a}x\right)} + b\sin{\left(\frac{2l \pi}{a}x\right)}\right]^2 dx \\<br /> = B^2 \left(\frac{1}{2} \int_0^a (1 - \cos{\left(\frac{2 l \pi}{a}x\right)})dx + \frac{b^2}{2} \int_0^a (1 - \cos{\left(\frac{4 l \pi}{a}x\right)})dx + <br /> b\int_0^a \cos{\left(\frac{l \pi}{a}x\right)}dx + b\int_0^a \cos{\left(\frac{3 l \pi}{a}x\right)}dx\right)\\<br /> = B^2(\frac{a}{2} + \frac{b^2a}{2})
B = \sqrt{\frac{2}{a(1 + b^2)}}
Did I do this correctly?
Last edited: