QuantumMech
- 16
- 0
Can some1 help me solve a first energy level Schrodinger (\psi_{1})with a the Hermite polynomial and also show that it equals to \frac{3}{2}\hbar \omega?
I got as far as
<br /> \newcommand{\pd}[3]{ \frac{ \partial^{#3}{#1} }{ \partial {#2}^{#3} } }\frac{\hbar^2}{2 m} \ \pd{\Psi}{x}{2} + V \Psi = \frac{\hbar}{2m} (2N_{1}\frac{x}{\alpha}e^\frac{-1}{2\alpha^2}x^2(\frac{1}{\alpha^2}+\frac{1}{\alpha^4}x^2)<br />
Thanks.
I got as far as
<br /> \newcommand{\pd}[3]{ \frac{ \partial^{#3}{#1} }{ \partial {#2}^{#3} } }\frac{\hbar^2}{2 m} \ \pd{\Psi}{x}{2} + V \Psi = \frac{\hbar}{2m} (2N_{1}\frac{x}{\alpha}e^\frac{-1}{2\alpha^2}x^2(\frac{1}{\alpha^2}+\frac{1}{\alpha^4}x^2)<br />
Thanks.