Domnu
- 176
- 0
Problem
Derive the Schroedinger equation (for harmonic oscillator) in momentum space.
The attempt at a solution
We have
ih \frac{\partial}{\partial t} \langle p' | \alpha \rangle = \langle p' | \frac{p^2}{2m} | \alpha \rangle + \langle p' | V(x) | \alpha \rangle
\iff ih \frac{\partial}{\partial t} \langle p' | \alpha \rangle = \frac{p'^2}{2m}\langle p' | \alpha \rangle + \left(i\hbar\frac{\partial}{\partial p'}\right)^2 \langle p' | \alpha \rangle
<br /> \[<br /> \iff ih\frac{\partial \Phi(p)}{\partial t} = \frac{p^2}{2m}\Phi(p) - \hbar^2 \frac{\partial^2 \Phi(p)}{\partial p^2}<br /> \]<br />
Is the above correctly done? If so, is this the generalized Schroedinger equation (without electrodynamics, etc.. just p^2/2m kinetic energy)?:
<br /> \[<br /> \iff ih\frac{\partial \Phi(p)}{\partial t} = \frac{p^2}{2m}\Phi +\displaystyle\sum_{n = 0}^\infty \frac{V^{(n)}(0)}{n!}\left(i\hbar \frac{\partial}{\partial p}}\right)^n \Phi<br /> \]<br />
Thanks very much for your help :)
Derive the Schroedinger equation (for harmonic oscillator) in momentum space.
The attempt at a solution
We have
ih \frac{\partial}{\partial t} \langle p' | \alpha \rangle = \langle p' | \frac{p^2}{2m} | \alpha \rangle + \langle p' | V(x) | \alpha \rangle
\iff ih \frac{\partial}{\partial t} \langle p' | \alpha \rangle = \frac{p'^2}{2m}\langle p' | \alpha \rangle + \left(i\hbar\frac{\partial}{\partial p'}\right)^2 \langle p' | \alpha \rangle
<br /> \[<br /> \iff ih\frac{\partial \Phi(p)}{\partial t} = \frac{p^2}{2m}\Phi(p) - \hbar^2 \frac{\partial^2 \Phi(p)}{\partial p^2}<br /> \]<br />
Is the above correctly done? If so, is this the generalized Schroedinger equation (without electrodynamics, etc.. just p^2/2m kinetic energy)?:
<br /> \[<br /> \iff ih\frac{\partial \Phi(p)}{\partial t} = \frac{p^2}{2m}\Phi +\displaystyle\sum_{n = 0}^\infty \frac{V^{(n)}(0)}{n!}\left(i\hbar \frac{\partial}{\partial p}}\right)^n \Phi<br /> \]<br />
Thanks very much for your help :)
Last edited: