jfy4
- 645
- 3
Homework Statement
Consider any two vectors, |a\rangle and |b\rangle. Prove the Schwartz inequality
<br /> |\langle a|b \rangle |^2 \leq \langle a|a \rangle \langle b|b \rangle<br />
Homework Equations
a basic understanding of vector calculus over \mathbb{C}...
The Attempt at a Solution
I wanted to do this proof almost the same way I do it over \mathbb{R}, except I'm not sure if I can follow through with the normal quadratic part...
I start with |\psi\rangle =|a\rangle + c |b\rangle and using the fact that \langle\psi | \psi \rangle \geq 0 I get
<br /> 0\leq \langle \psi | \psi \rangle = \langle a|a \rangle + c\langle a|b\rangle + c^{\ast}\langle b|a\rangle + |c|^2\langle b|b\rangle<br />
which can be written
<br /> 0\leq \langle a|a\rangle + 2\Re[c\langle a|b\rangle ] +|c|^2\langle b|b\rangle<br />
So I'm wondering if I can consider this quadratic in c and claim that
<br /> (2|\langle a|b\rangle |)^2-4\langle a|a\rangle \langle b|b\rangle \leq 0<br />
Any help would be appreciated, Thanks.