Second order diagram for the "scalar graviton"

Hill
Messages
735
Reaction score
575
Homework Statement
Write down the next-order diagrams. Check the answer using Green's function method.
Relevant Equations
Equation of motion: ##\Box h - \lambda h^2 -J =0##
It has been shown in the text that ##h_0 = \frac 1 {\Box} J## with the diagram
1709130278067.png

and that ##h_1 = \lambda \frac 1 {\Box} (h_0 h_0) = \lambda \frac 1 {\Box} [( \frac 1 {\Box} J)( \frac 1 {\Box}J)]## with the diagram
1709130451437.png


I was not sure if the next order diagram is
1709130608327.png

or rather
1709130745770.png

Thus, I substitute ##h=h_0+h_1+h_2## in the equation of motion and calculate to the ##\mathcal O(\lambda^2)##. I get ##\Box h_2 = 2 \lambda h_0 h_1##.
I understand that the factor 2 means that the last diagram above is correct.
Is it so?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top