Second order diagram for the "scalar graviton"

Hill
Messages
735
Reaction score
575
Homework Statement
Write down the next-order diagrams. Check the answer using Green's function method.
Relevant Equations
Equation of motion: ##\Box h - \lambda h^2 -J =0##
It has been shown in the text that ##h_0 = \frac 1 {\Box} J## with the diagram
1709130278067.png

and that ##h_1 = \lambda \frac 1 {\Box} (h_0 h_0) = \lambda \frac 1 {\Box} [( \frac 1 {\Box} J)( \frac 1 {\Box}J)]## with the diagram
1709130451437.png


I was not sure if the next order diagram is
1709130608327.png

or rather
1709130745770.png

Thus, I substitute ##h=h_0+h_1+h_2## in the equation of motion and calculate to the ##\mathcal O(\lambda^2)##. I get ##\Box h_2 = 2 \lambda h_0 h_1##.
I understand that the factor 2 means that the last diagram above is correct.
Is it so?
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top