Second order differential equation

jtruth914
Messages
20
Reaction score
0
Find a solution to the following second order differential equation
xy'+y=1/y^2

My Attempt:

P= y'= dy/dx

x dy/dx + y = 1/y^2

dy/dx + y/x = 1/xy^2

Integrating Factor = e^∫1/x dx = e^lnx

y e^lnx=∫ (e^lnx)(1/xy^2) dx
 
Physics news on Phys.org
I do not see how this equation is second-order. Where is the second derivative of y?

So where are you stuck? What are you doing?

It bothers me a little that you seem to be using an integrating factor on a nonlinear differential equation; typically, multiplying by an integrating factor is something you do when the the DE is linear (this one isn't since you have a y^2 term).

This differential equation is nonlinear, so it must be one of the types that can be solved explicitly (if this is a homework problem). Can it be shown to be exact, homogeneous, or Bernoulli? (Hint: it can.)
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top