Second order mixed derivative and chain rule

Telemachus
Messages
820
Reaction score
30
I want to find the second order derivative for f(x,y),x(u,v),y(u,v), f depends on x and y, and x and y depends on u and v. I'm trying to find \frac{{\partial^2 f}}{{\partial v \partial u}}This is what I did:
\frac{{\partial f}}{{\partial u}}=\frac{{\partial f}}{{\partial x}}\frac{{\partial x}}{{\partial u}}+\frac{{\partial f}}{{\partial y}}\frac{{\partial y}}{{\partial u}}

Then:
\frac{{\partial^2 f}}{{\partial v \partial u}}=\frac{{\partial}}{{\partial v}} \left (\frac{{\partial f}}{{\partial x}}\frac{{\partial x}}{{\partial u}}\right )+\frac{{\partial}}{{\partial v}} \left (\frac{{\partial f}}{{\partial y}}\frac{{\partial y}}{{\partial u}}\right )

Finally what I get:

\displaystyle\frac{{\partial^2 f}}{{\partial v \partial u}}=\frac{{\partial^2 f}}{{\partial x^2}}\frac{{\partial x}}{{\partial v}}\frac{{\partial x}}{{\partial u}}+\frac{{\partial^2 f}}{{\partial y \partial x}} \frac{{\partial y}}{{\partial v}}\frac{{\partial x}}{{\partial u}}+\frac{{\partial f}}{{\partial x}}\frac{{\partial^2 x}}{{\partial v \partial u}}+\frac{{\partial^2 f}}{{\partial x \partial y}}\frac{{\partial x}}{{\partial v}}\frac{{\partial y}}{{\partial v}}+\frac{{\partial^2 f}}{{\partial y^2}}(\frac{{\partial y}}{{\partial v}})^2+\frac{{\partial f}}{{\partial y}}\frac{{\partial^2 y}}{{\partial v^2}}

Anyone knows if this is right?
 
Last edited:
Physics news on Phys.org
In the last three terms of the last line, you appear to have changed ∂y/∂u to ∂y/∂v .
 
Thank you SammyS, I knew something was wrong :D
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top