- 3,372
- 465
I am feeling a little stupid tonight... So let me build the problem...
For a single particle operator O, we have in the basis |i> we have that:
O= \sum_{ij} o_{ij} |i><j| with o_{ij}=<i|O|j>
Then for N particles we have that:
T=\sum_{a}O_{a}= \sum_{ij} o_{ij} \sum_{a} |i>_{a}<j|_{a} with a=1,2...,N
How can we write this afterwards (for bosons) in respect to the creation and annihilation operators as:
T= \sum_{ij} o_{ij} c_{i}^{t} c_{j}
From what I suspect, \sum_{a} |i>_{a}<j|_{a} must be equal to the number operator... But for some reason I'm unable to see it...Also I tried taking this:
O= \sum_{ij} o_{ij} |i><j|
O= \sum_{ij} o_{ij} c_{i}^{t}|0><0|c_{j}
And then summing over the particles:
O= \sum_{ij} o_{ij} c_{i}^{t}c_{j} \sum_{a}|0>_{a}<0|_{a}
but I see no reason why the sum must be equal to unity \sum_{a}|0>_{a}<0|_{a} =1
Please give hints, not answers
For a single particle operator O, we have in the basis |i> we have that:
O= \sum_{ij} o_{ij} |i><j| with o_{ij}=<i|O|j>
Then for N particles we have that:
T=\sum_{a}O_{a}= \sum_{ij} o_{ij} \sum_{a} |i>_{a}<j|_{a} with a=1,2...,N
How can we write this afterwards (for bosons) in respect to the creation and annihilation operators as:
T= \sum_{ij} o_{ij} c_{i}^{t} c_{j}
From what I suspect, \sum_{a} |i>_{a}<j|_{a} must be equal to the number operator... But for some reason I'm unable to see it...Also I tried taking this:
O= \sum_{ij} o_{ij} |i><j|
O= \sum_{ij} o_{ij} c_{i}^{t}|0><0|c_{j}
And then summing over the particles:
O= \sum_{ij} o_{ij} c_{i}^{t}c_{j} \sum_{a}|0>_{a}<0|_{a}
but I see no reason why the sum must be equal to unity \sum_{a}|0>_{a}<0|_{a} =1
Please give hints, not answers
Last edited: