talolard
- 119
- 0
Homework Statement
yy''=y'^{2}-y'^{3}
I'm quite sure I got lost somewhere. Can anyone show me where?
Thanks
Set
z(y)=y'
then
\frac{\partial z}{\partial y}=y''\cdot y'=zy'' so y''=\frac{z'}{z}
Plugging this in
y\frac{z'}{z}=z^{2}\left(1-z\right) and so \frac{1}{y}\partial y=\frac{\partial z}{z^{3}\left(1-z\right)}
Integrating we have
ln\left(y\right)=\int\frac{1}{z^{3}}+\frac{1}{z^{2}}+\frac{1}{z}-\frac{1}{z-1}=-\frac{1}{z^{2}}-\frac{1}{z}+ln\left(\frac{z}{z-1}\right)+c
So
y=c_{1}\left(\frac{z}{z-1}\right)e^{-\left(\frac{z+1}{^{z^{2}}}\right)} and recalling that z=y' we have
y=c_{1}\left(\frac{y'}{y'-1}\right)e^{-\left(\frac{y'+1}{y'^{2}}\right)}
What now?