Seeking Advice on my Plan for Calculus Self-Study Textbooks

AI Thread Summary
A sophomore majoring in microbiology and mathematics is preparing for graduate studies in virology or computational biology, focusing on both quantitative and experimental approaches. They plan to self-study calculus and linear algebra to strengthen their mathematical foundation before advancing to multi-variable calculus and linear algebra courses. The individual is considering several textbooks for self-study, including "A First Course in Calculus" and "How to Prove It," and is seeking advice on whether to read preparatory texts before tackling more rigorous books like Apostol, Spivak, or Courant. Recommendations include utilizing online resources for additional learning and exploring various textbooks for linear algebra. The discussion emphasizes the importance of understanding both practical applications and theoretical proofs in mathematics.
bacte2013
Messages
394
Reaction score
47
Dear PF friends,

I am a sophomore with double majors in microbiology and mathematics (just declared on last week) doing research on the computational/quantitative biology research in the field of virology. In future, I want to go to a graduate school in either virology or computational biology that focus on both numerical approach and "wet experimental" approach to science. I just declared my second major in mathematics on last week since I thought that having a quantiative/analytic background like mathematics would be very helpful than chemistry or physics (which I was planning to major until my decision for mathematics). I have been planning to do a self-study on the mathematics, particularly the calculus, which I want to start as soon as this semester ends. I know a lot of working.computational knowledge in the vector calculus, linear algebra, differential equations, and discrete mathematics, but my mathematical knowledge is sporadic and non-systematic. My mathematics adviser also recommended me to do some self-study so I can effectively prepare for my multi-variable calculus and linear algebra courses on next semester. Unfortunately, my only mathematics course is a first semester of typical single-variable calculus course which I took on last year's Fall; I was not able to proceed to the second semester after that since I took many chemistry courses to satisfy my chemistry major (which I am not pursuing now). My math adviser told me I can proceed to multi-variable calculus & linear algebra on next semester if I am comfortable, and I agreed to do an extensive self-study on the necessary materials. I have a following studying plan I will start as soon as early December, which I would like to have your input for self-studying:

"A First Course in Calculus" (Serge Lang) + "How to Prove It" (Velleman) + "Basic Mathematics" (Serge Lang) -----> Apostol Vol.1 vs. Spivak. vs Courant. Do I need to read the "easier" single-variable calculus textbook like A First Course in Calculus by Serge Lang along with the How to Prove It by Velleman and Basic Mathematics by Lang before proceeding to Apostol/Spivak/Courant? I would like to start with those rigorous books but I heard that it is quite difficult to do so. I do have a working knowlegde in mathematics as I stated on the first paragraph, which I grasped through the book called "Mathematical Methods for Physical Science" by Mary L. Boas. In this case, should I still read those three preparatory books before Apostol,Spivak, and Courant? Between Apostol/Spivak/Courant, which textbook has a most detailed contents in calculus along with some applications? I heard that all three books lack in applications but I can supplement them with the problems book like Schaum or normal calculus textbooks like Stewart.

My multi-variable calculus course uses the eTextbook (made from the Department of Mathematics) and linear algebra uses a book called "Linear Algebra" by Friedberg. Is it okay to supplement the multi-variable calculus course with the "Calculus of Several Variables" by Serge Lang + Calculus Vol.II by Apostol? What about my linear algebra textbook? Can I supplemtn Friedberg with Apostol too?

I apologize for this long post and any grammatical errors. I look forward to your advice!
 
Physics news on Phys.org
^
Thanks for the website but that was not what I looked for...
 
There are two ways to study calculus:
1. Learn how to use it as a tool
2. Convince yourself why things are so by doing proofs
Usually the first option is the easiest. But the deeper you get into Maths the more you'll realize the value of the second option. In case you're not familiar with proofs, there's a very beautiful book called Mathematical Proofs A Transition [Gary Chartrand]. After reading this book, advance math books will become way accessible.
If you want to learn the concepts Multivariable Calculus, there's a series on YouTube by UCBerkeley [https://www.youtube.com/playlist?list=PL58B3188E21324AD2]. In my opinion, you won't find a better set of lectures.
If you want to learn Linear Algebra, you won't find a better book than Matrix Analysis and Applied Linear [Carl D. Meyer].
 
For the following four books, has anyone used them in a course or for self study? Compiler Construction Principles and Practice 1st Edition by Kenneth C Louden Programming Languages Principles and Practices 3rd Edition by Kenneth C Louden, and Kenneth A Lambert Programming Languages 2nd Edition by Allen B Tucker, Robert E Noonan Concepts of Programming Languages 9th Edition by Robert W Sebesta If yes to either, can you share your opinions about your personal experience using them. I...
Hi, I have notice that Ashcroft, Mermin and Wei worked at a revised edition of the original solid state physics book (here). The book, however, seems to be never available. I have also read that the reason is related to some disputes related to copyright. Do you have any further information about it? Did you have the opportunity to get your hands on this revised edition? I am really curious about it, also considering that I am planning to buy the book in the near future... Thanks!
This is part 2 of my thread Collection of Free Online Math Books and Lecture Notes Here, we will consider physics and mathematical methods for physics resources. Now, this is a work in progress. Please feel free comment regarding items you want to be included, or if a link is broken etc. Note: I will not post links to other collections, each link will point you to a single item. :book:📚📒 [FONT=trebuchet ms]Introductory college/university physics College Physics, Openstax...

Similar threads

Replies
4
Views
4K
Replies
13
Views
4K
Replies
17
Views
6K
Replies
5
Views
4K
Replies
3
Views
2K
Replies
1
Views
2K
Replies
24
Views
4K
Replies
12
Views
7K
Back
Top