- #1

- 471

- 0

*Ok, I've just come across a confusing projectile motion problem. I have my own solution for it from the work that I have done so far. Please help me finish the problem for the information I have so far. Thanks a lot!:tongue:*Problem: A fireman, 50m away from the burning building, directs a stream of water from a ground level fire hose at an angle of 30 degrees above the horizontal. If the speed of the stream as it leaves the hose is 40 m/s, at what height will the stream of water strike the building?

**My solution so far from the work I have done.**

Ok, first I found the x and y independent velocity components of 40m/s at 30 degrees above horizontal. Vy=20m/s; Vx=34.64 m/s

I found the time to the highest point, 2.041s; therefore the time of the total flight is 4.082s.

Then I found x (total distance traveled) which is 141.4m

Then I found the highest point which is 20.41m

Ok, first I found the x and y independent velocity components of 40m/s at 30 degrees above horizontal. Vy=20m/s; Vx=34.64 m/s

I found the time to the highest point, 2.041s; therefore the time of the total flight is 4.082s.

Then I found x (total distance traveled) which is 141.4m

Then I found the highest point which is 20.41m

__But the I realized that I had to find the height of when it reaches the building 50 meters away... I have all the information for the TOTAL FLIGHT. How am I suppose to find the height of when the distance is 50m?? Do I substitute 50m for X=Xo+Voxt+.5AxT^2?? Then I find the time of that distance, then the hight?? What am I doing wrong here??____At first, I wanted to find all the info of the TOTAL FLIGHT then try to come up with a coordinate for 50m, but now I realized that it would be hard to graph it. I don't know what to do, I haven't really done a lot of these problems before.__However, I understand the basic concepts of how to find the information of these kind of projectile motion problems. Thanks a lot for you help!:tongue: