Separable Differential Equation

dkotschessaa
Messages
1,063
Reaction score
763

Homework Statement



Solve the given differential equation by separation of variables.



Homework Equations



dP/dt = P - P2

The Attempt at a Solution



This is no problem to "solve" except that Webassign (:cry:) wants to know the whole thing in terms of P.

You end up with

dP/(P-P2) = dt

which is not a difficult integral, but you end up with a left side: (after "e-ing" both sides) of P-P^2. How can I give this in terms of P, or am I thinking wrong? (probably the latter)

-Dave K
 
Physics news on Phys.org
dkotschessaa said:

Homework Statement



Solve the given differential equation by separation of variables.

Homework Equations



dP/dt = P - P2

The Attempt at a Solution



This is no problem to "solve" except that Webassign (:cry:) wants to know the whole thing in terms of P.

You end up with

dP/(P-P2) = dt

which is not a difficult integral, but you end up with a left side: (after "e-ing" both sides) of P-P^2. How can I give this in terms of P, or am I thinking wrong? (probably the latter)

-Dave K
I'm assuming that P2 is really P2 .

What is P2 equal to after you integrate?

Don't you have an equation which is quadratic in P ?
 
Yes, you're correct, it's P^2 (Sorry about that). I suppose yes, it's a quadratic. Let me see what happens.
 
So your equation is
\int{\frac{dp}{p-p^2}dp}=\int{dt}

Factor out p in the denominator: it becomes a product. You can resolve the LHS integrand to partial fractions.

ehild
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top