Series expansion tetrad Fermi coordinates

WannabeNewton
Science Advisor
Gold Member
Messages
5,848
Reaction score
552
Hi all. I'm working on a project that requires me to perform calculations in Fermi normal coordinates to certain orders, mostly 2nd order in the distance along the central worldline orthogonal space-like geodesics. In particular I need a rotating tetrad propagated along the central worldline obeying an arbitrary transport law which is parallel transported along the space-like geodesics so as to generate a tetrad field at each point in the coordinates to 2nd order. I found a very handy paper http://arxiv.org/pdf/gr-qc/0010096.pdf which computes the series expansion I need to arbitrary order but I'm not able to reproduce the calculation fully.

Appendix B of the paper is the relevant section for my question. In (66) the tetrad is expanded in a power series about the central worldline ##\gamma## in terms of the distance ##u## along the space-like geodesics orthogonal to and emanating from the worldline. In (67), ##\xi^{\mu}## is the unit tangent field to each space-like geodesic. The first thing to note is that ##\xi^{\mu}(e_0)_{\mu}|_{u = 0} = 0## by construction hence ##\xi^{\mu}(e_0)_{\mu} = 0## all along the space-like geodesic since both ##\xi^{\mu}## and ##e^{\mu}_0## are parallel transported along the geodesic. Now ## e^{\mu}_0|_{u = 0} = \delta^{\mu}_{0}## so ##\xi^{\mu}(e_0)_{\mu}|_{u = 0} = 0 \Rightarrow \xi^{0}|_{u = 0} = 0## but this does not mean that ##\xi^0 = 0## for all ##u## because ##\xi^{\mu}(e_0)_{\mu} = 0## does not imply ##\xi^{\mu}\delta^0_{\mu} = 0## as is clear both intuitively and from (65). So I will write ##\xi^{i}## in place of ##\xi^{\mu}## below because the final expression involves only ##\xi^{\mu}## and in the end we evaluate at ##u = 0## so we only need to consider the ##\xi^i## terms but you should keep the above in mind.

My first problem then is with (68). We differentiate (67) once with respect to ##\frac{d}{du}## to get \frac{d^2}{du^2}e^{(\nu)}_{\mu} - \Gamma^{\sigma}_{\mu i, l} e^{(\nu)}_{\sigma} \xi^l \xi^i - \Gamma^{\sigma}_{\mu i}\xi^i \frac{d}{du}e^{(\nu)}_{\sigma} - \Gamma^{\sigma}_{\mu i}e^{(\nu)}_{\sigma} \frac{d \xi^i}{du} \\= \frac{d^2}{du^2}e^{(\nu)}_{\mu} - \Gamma^{\sigma}_{\mu i, l} e^{(\nu)}_{\sigma} \xi^l \xi^i - \Gamma^{\sigma}_{\mu i}\Gamma^{\lambda}_{\sigma l}\xi^i \xi^l e^{(\nu)}_{\lambda} - \Gamma^{\sigma}_{\mu i}e^{(\nu)}_{\sigma} \frac{d \xi^i}{du}\\= \frac{d^2}{du^2}e^{(\nu)}_{\mu} - \Gamma^{\sigma}_{\mu i, l} e^{(\nu)}_{\sigma} \xi^l \xi^i - \Gamma^{\sigma}_{\mu i}\Gamma^{\lambda}_{\sigma l}\xi^i \xi^l e^{(\nu)}_{\lambda} + \Gamma^{\sigma}_{\mu i}e^{(\nu)}_{\sigma} \Gamma^{i}_{l m}\xi^l \xi^m \\ = \frac{d^2}{du^2}e^{(\nu)}_{\mu} - \Gamma^{\nu}_{\mu i, l} \xi^l \xi^i - \Gamma^{\sigma}_{\mu i}\Gamma^{\nu}_{\sigma l}\xi^i \xi^l + \Gamma^{\nu}_{\mu i}\Gamma^{i}_{l m}\xi^l \xi^m = 0
where I've used ##\frac{d \xi^i}{du} = -\Gamma^{i}_{lm}\xi^l \xi^m## from the geodesic equation. We thus have \frac{1}{2!}\frac{d^2 e^{(\nu)}_{\mu}}{du^2}|_{u = 0}u^2 = \frac{1}{2!}(\overset{0}{\Gamma^{\nu}_{\mu i, l}} + \overset{0}{\Gamma^{\sigma}_{\mu i} }\overset{0}{\Gamma^{\nu}_{\sigma l}} - \overset{0}{\Gamma^{\nu}_{\mu m}}\overset{0}{\Gamma^{m}_{i l}})X^i X^l
since ##X^i = u \xi^i|_{u = 0}##. As you can see this is clearly not what the paper has in (68). It doesn't have the extra ##- \overset{0}{\Gamma^{\nu}_{\mu m}}\overset{0}{\Gamma^{m}_{i l}}## term. I however do not see how this term necessarily vanishes. Could anyone help me out with this? Why does the aforementioned term vanish in (68)? Thanks in advance.
 
Physics news on Phys.org
Look at (2).
 
Haha yes of course, thanks George! I completely skipped over the section on Riemann coordinates and went straight to the section on Fermi coordinates so that was entirely my fault.

To be sure though, (2) is as given valid in Riemann normal coordinates, not necessarily Fermi normal coordinates. But it should hold in Fermi coordinates as well for exactly the same reason, as explained on p.331 of MTW, yes?
 
WannabeNewton said:
for exactly the same reason, as explained on p.331 of MTW, yes?

Didn't have MTW at home on the weekend.

Yes, it looks like it is given by something like the equation before (13.69b), i.e., by using the geodesic equation along the spacelike geodesic for the coordinates ##X^i = u \xi^i|_{u = 0}##.
 
Last edited:
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Back
Top