Series Homework Question: Divergent or Convergent? Methods Compared

  • Thread starter Thread starter Of Mike and Men
  • Start date Start date
  • Tags Tags
    Series
Of Mike and Men
Messages
53
Reaction score
3

Homework Statement


I was watching a PatrickJMT video on ratio test and he gave this problem. I solved it before he did, and he got that it was divergent. He didn't simplify it initially, so our methods of approach are different. Did I do something wrong? I checked my calculator to make sure all my simplifications were correct. So I'm assuming I did something near the limit portion that was incorrect (if at all). Thanks


∑ n/31+3n
n=1

Homework Equations

The Attempt at a Solution



∑ n/31+3n = n/(3⋅27n)
n=1

lim |(n+1)/(3⋅27n+1) / (n/3 *27n)|
n→∞

= lim |(n+1)/n| * (1/27)
n→∞
= 1 * 1/27
=1/27 < 1

Convergent by Ratio Test
 
Physics news on Phys.org
Did you use the ratio test correctly?
 
IMG_1809.jpg
Math_QED said:
Did you use the ratio test correctly?
Nope. Got it, thanks.

[edit]

Actually I typed my work incorrectly. I'll fix it. but to be sure...
 
Of Mike and Men said:

Homework Statement


I was watching a PatrickJMT video on ratio test and he gave this problem. I solved it before he did, and he got that it was divergent. He didn't simplify it initially, so our methods of approach are different. Did I do something wrong? I checked my calculator to make sure all my simplifications were correct. So I'm assuming I did something near the limit portion that was incorrect (if at all). Thanks


∑ n/31+3n
n=1

Homework Equations

The Attempt at a Solution



∑ n/31+3n = n/(3⋅27n)
n=1

lim |(n+1)/(3⋅27n+1) / (n/3 *27n)|
n→∞

= lim |(n+1)/n| * (1/27)
n→∞
= 1 * 1/27
=1/27 < 1

Convergent by Ratio Test

It is convergent, as you have shown correctly using the ratio test.

You can actually find the sum ##\sum_{n=1}^N n/3^{3n+1}## explicitly (as a reasonably simple closed-from expression in ##N##), then take the limit as ##N \to \infty##. All you need to do is find a formula for ##f_N(x) =\sum_{n=1}^N n x^n##, and these are widely available, or you can work it out as ##f_N(x) = x (d/dx) g_N(x)##, where ##g_N(x) = \sum_{n=1}^N x^n##, which is elementary.
 
Last edited:
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...

Similar threads

Back
Top