YvesSch
- 4
- 0
Sum of reciprocal of some base (I just chose e as example) to prime power?
Ʃ \frac{1}{e^{p}} = \frac{1}{e^2}+\frac{1}{e^3}+\frac{1}{e^5}+\frac{1}{e^7}+\frac{1}{e^{11}}+\frac{1}{e^{13}}+\frac{1}{e^{17}}+...
p\inP
Brute force simulation gives me
~0.19279118970439518
Is there an elementary, non-transient solution?
Ʃ \frac{1}{e^{p}} = \frac{1}{e^2}+\frac{1}{e^3}+\frac{1}{e^5}+\frac{1}{e^7}+\frac{1}{e^{11}}+\frac{1}{e^{13}}+\frac{1}{e^{17}}+...
p\inP
Brute force simulation gives me
~0.19279118970439518
Is there an elementary, non-transient solution?