John 123
- 32
- 0
Homework Statement
Obtain the Taylor series solution up to and including order 3 of the following non linear ode
<br /> y'=x^2+\sin y,y(0)=\frac{\pi}{2}<br />
Homework Equations
After substituting the power series form of sin(y) I get:
<br /> y'=x^2+(y-\frac{y^3}{3!}+\frac{y^5}{5!}-\frac{y^7}{7!}...)<br />
The Attempt at a Solution
We require a series solution of the form:
<br /> y=a_0+a_1x+a_2x^2+a_3x^3+a_4x^4+...<br />
Then
<br /> y'=a_1+2a_2x+3a_3x^2+4a_4x^3+...<br />
Substituting y and y' in the ode and equating coefficients of like powers of x gives:
<br /> a_1=a_0-\frac{a_0^3}{6}<br />
<br /> 2a_2=a_1-\frac{a_0^2a_1}{2}<br />
<br /> 3a_3=1+a_2-\frac{a_0a_1^2}{2}-\frac{a_2a_0^2}{2}<br />
Then expressing all the a's in terms of a_0 and using :
<br /> a_0=y(0)=\frac{\pi}{2}<br />
I get a result completely different to the book answer and cannot see my error.
BOOK ANSWER IS:
<br /> y=\frac{\pi}{2}+x+\frac{1}{6}x^2+<br />