Prove A C B for Set Theory: Help with Pi and Integers

Andrax
Messages
117
Reaction score
0

Homework Statement



A = { pi + 2k pi / k \in Z }
B = {(- pi / 3) + (2k pi / 3 ) / k \in A }
Prove that A C B

Homework Equations


A C B = \forallXE E : x \ni A \Rightarrow X \ni B

The Attempt at a Solution


\ni[k E Z ]: x = pi + 2k pi
\ni[k E Z ]: x = pi ( 1 + 2k)
I'm sure i need to get a k and replace it with k' to prove that it belongs to B
 
Physics news on Phys.org
Edit : solved it by replacing pi by -pi/3+4pi/3 which led to the correct answer.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top