Show Set Theory Subset Relationship: x, y $\in$ B

Mr Davis 97
Messages
1,461
Reaction score
44

Homework Statement


Assume that ##x## and ##y## are members of a set ##B##. Show that ##\{ \{x\}, \{x,y\} \} \in \mathcal{P} \mathcal{P} B##

Homework Equations

The Attempt at a Solution


I know that ##\{ \{x\}, \{x,y\} \} \in \mathcal{P} \mathcal{P} B## iff ##\{ \{x\}, \{x,y\} \} \subseteq \mathcal{P} B##, but I don't see where this gets me. To me it's obviously true, but I don't see how to show it.
 
Physics news on Phys.org
If something seems obvious, just see if you can use the basic definitions to state it. State the definition of power set and start there.
Since x and y ∈ B, {x} and {x,y} are subsets of B. By the definition of the power set ...
 
FactChecker said:
If something seems obvious, just see if you can use the basic definitions to state it. State the definition of power set and start there.
Since x and y ∈ B, {x} and {x,y} are subsets of B. By the definition of the power set ...
Oh, right. That seems really obvious now. So the power set of B is the set of all subsets. Since ##\{x\}## and ##\{x,y\}## are subsets of B, the set ##\{ \{x\}, \{x,y\} \}## must be a subset of the power set.
 
Back
Top