Miike012
- 1,009
- 0
Question is in paint doc. Determine if the statement is true or false.
My solution:
I have two solutions
Sol 1: FalseIf A1 contains A2 and A2 contains A3 then the number of elements of A3 contained in A1 is less than the number of elements in A2 contained in A1. In other words the intersection of A1 and A3 has fewer elements than the intersection of A1 and A3. Therefore the intersection cannot be infinite if the elements in each consecutive intersection are decreasing.
Sol 2: True
If A1, A2,... An are sets of infinite number of elements then A1 = A2 = ... = An. For instance, how can a set containing all negative real numbers (-∞,0] and a set containing all positive real numbers [,+∞) be infinite if the set of all read numbers contains more elements than the two sets above? Therefore is it true if two or more sets have infinite elements then those sets are equal?
My solution:
I have two solutions
Sol 1: FalseIf A1 contains A2 and A2 contains A3 then the number of elements of A3 contained in A1 is less than the number of elements in A2 contained in A1. In other words the intersection of A1 and A3 has fewer elements than the intersection of A1 and A3. Therefore the intersection cannot be infinite if the elements in each consecutive intersection are decreasing.
Sol 2: True
If A1, A2,... An are sets of infinite number of elements then A1 = A2 = ... = An. For instance, how can a set containing all negative real numbers (-∞,0] and a set containing all positive real numbers [,+∞) be infinite if the set of all read numbers contains more elements than the two sets above? Therefore is it true if two or more sets have infinite elements then those sets are equal?