latentcorpse
- 1,411
- 0
I've been asked to show that \epsilon _{{{\it ijm}}}\epsilon _{{{\it mkl}}} is an isotropic tensor using \epsilon _{{{\it ijk}}}\det \left( M \right) =\epsilon _{{\alpha <br />
\beta \gamma }}m_{{i\alpha }}m_{{j\beta }}m_{{k\gamma }}.
Then to take the most general form for a fourth rank tensor and show \epsilon _{{{\it ijm}}}\epsilon _{{{\it mkl}}}=\delta_{{{\it ik}}}<br /> \delta_{{{\it jl}}}-\delta_{{{\it il}}}\delta_{{{\it jk}}}
The first part I tried and got completely lost on.
As for the second part all I've managed so far is to ascertain that the most general fourth rank tensor is c_{{{\it ijkl}}}=\lambda \delta _{{{\it ij}}}\delta_{{{\it kl}}}+\mu <br /> \delta _{{{\it ik}}}\delta_{{{\it jl}}}+\upsilon \delta _{{{\it il}}}<br /> \delta_{{{\it jk}}}
Then to take the most general form for a fourth rank tensor and show \epsilon _{{{\it ijm}}}\epsilon _{{{\it mkl}}}=\delta_{{{\it ik}}}<br /> \delta_{{{\it jl}}}-\delta_{{{\it il}}}\delta_{{{\it jk}}}
The first part I tried and got completely lost on.
As for the second part all I've managed so far is to ascertain that the most general fourth rank tensor is c_{{{\it ijkl}}}=\lambda \delta _{{{\it ij}}}\delta_{{{\it kl}}}+\mu <br /> \delta _{{{\it ik}}}\delta_{{{\it jl}}}+\upsilon \delta _{{{\it il}}}<br /> \delta_{{{\it jk}}}