I Show that commutativity is a structural property

Mr Davis 97
Messages
1,461
Reaction score
44
I am trying to prove that if two groups are isomorphic then one is abelian iff the other is abelian. This is a simple task, but I am a little confused about how to write it up.

Suppose that ##\phi : G \to H## is an isomorphism. Let ##a,b \in G##. Then ##ab = ba \implies \phi (a) \phi (b) = \phi (b) \phi (a)##. Here is where my question lies. To show that ##H## is abelian, I need to show that any two arbitrary elements commute. Why does ##\phi (a) \phi (b) = \phi (b) \phi (a)## tell me that any two arbitrary elements of ##H## commute? Does it have something to with ##\phi## being a bijection?
 
Physics news on Phys.org
Mr Davis 97 said:
I am trying to prove that if two groups are isomorphic then one is abelian iff the other is abelian. This is a simple task, but I am a little confused about how to write it up.

Suppose that ##\phi : G \to H## is an isomorphism. Let ##a,b \in G##. Then ##ab = ba \implies \phi (a) \phi (b) = \phi (b) \phi (a)##. Here is where my question lies. To show that ##H## is abelian, I need to show that any two arbitrary elements commute. Why does ##\phi (a) \phi (b) = \phi (b) \phi (a)## tell me that any two arbitrary elements of ##H## commute? Does it have something to with ##\phi## being a bijection?
Yes. ##\phi## covers all elements of ##H##:
##ab = ba \Longleftrightarrow \phi (a) \phi (b) = \phi (b) \phi (a) \Longleftrightarrow a'b'=b'a'##
You simply already have written all elements of ##H## since ##H=\operatorname{im} \phi = \{\,\phi(a)\,|\,a\in G\,\}##.
 
  • Like
Likes Mr Davis 97
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...

Similar threads

Back
Top