tonit
- 55
- 1
Homework Statement
Show that a group G is abelian, if and only if (gh)^{-1} = g^{-1} h^{-1} for all g,h\in G
Homework Equations
The Attempt at a Solution
gh = hg \\⇔ (gh)(gh)^{-1} = hg(gh)^{-1} \\⇔ <br /> <br /> 1 = hg(gh)^{-1} \\⇔h^{-1} = (h^{-1}h)g(gh)^{-1} \\ ⇔g^{-1}h^{-1} = (g^{-1}g)(gh)^{-1}\\ ⇔ (gh)^{-1} = g^{-1}h^{-1}<br /> <br />
The converse is clear from the above by taking the steps backwards
Thus the statement is proved. Correct?
Last edited: