hau.sim
- 5
- 0
Homework Statement
Show that t-hat = 1/2 solves the equation below.
Now, I know I can just plug in 1/2, where t-hat is, and see that both sides are equal to zero, but is it possible to isolate t-hat. Say, if wanted to find t, and did not know the value already..?
<br /> \[2\hat t - 1 = \frac{{\sigma _F^{}}}{{2\sigma _z^{}}}\left( {\frac{1}{{\sqrt {1 - \hat t} }} - \frac{1}{{\sqrt {\hat t} }}} \right)\]<br />
Homework Equations
<br /> \[\hat t \in [0,1]\]<br />
<br /> \[\begin{array}{l}<br /> z \sim N\left( {0,\sigma _z^2} \right)\\<br /> F \sim N\left( {\bar F,\sigma _F^2} \right)<br /> \end{array}\]<br />
The Attempt at a Solution
<br /> \[\begin{array}{l}<br /> 2\hat t - 1 = \frac{{\sigma _F^{}}}{{2\sigma _z^{}}}\left( {\frac{1}{{\sqrt {1 - \hat t} }} - \frac{1}{{\sqrt {\hat t} }}} \right)\\<br /> 4{{\hat t}^2} - 4\hat t + 1 = \frac{{\sigma _F^2}}{{4\sigma _z^2}}{\left( {\frac{1}{{\sqrt {1 - \hat t} }} - \frac{1}{{\sqrt {\hat t} }}} \right)^2}\\<br /> 4{{\hat t}^2} - 4\hat t + 1 = \frac{{\sigma _F^2}}{{4\sigma _z^2}}\left[ {\frac{1}{{1 - \hat t}} + \frac{1}{{\hat t}} - 2\frac{1}{{\sqrt {1 - \hat t} \sqrt {\hat t} }}} \right]<br /> \end{array}\]<br />
Thx, any help is appreciated, P DK