Show the gamma density function integrates to 1

Catchfire
Messages
30
Reaction score
0

Homework Statement


Show the gamma density function integrates to 1.

Homework Equations


Assume α > 0, λ > 0, t > 0
g(t) = \frac{λ^α}{\Gamma (α)} t^{α-1}e^{-λt}
\Gamma (α)= \int_0^∞ t^{α-1} e^{-t} dt

The Attempt at a Solution



Show \int_0^∞ \frac{λ^α}{\Gamma (α)} t^{α-1}e^{-λt} dt = 1

\int_0^∞ \frac{λ^α}{\Gamma (α)} t^{α-1}e^{-λt} dt
= \frac{λ^α}{\Gamma (α)} \int_0^∞ t^{α-1}e^{-λt}dt
= \frac{λ^α}{\Gamma (α)} \int_0^∞ t^{α-1}e^{-t}e^λdt
= \frac{λ^αe^λ}{\Gamma (α)} \int_0^∞ t^{α-1}e^{-t}dt
= \frac{λ^αe^λ \Gamma (α)}{\Gamma (α)}
= λ^αe^λ

...where did I lose the plot?
 
Physics news on Phys.org
Catchfire said:

Homework Statement


Show the gamma density function integrates to 1.

Homework Equations


Assume α > 0, λ > 0, t > 0
g(t) = \frac{λ^α}{\Gamma (α)} t^{α-1}e^{-λt}
\Gamma (α)= \int_0^∞ t^{α-1} e^{-t} dt

The Attempt at a Solution



Show \int_0^∞ \frac{λ^α}{\Gamma (α)} t^{α-1}e^{-λt} dt = 1

\int_0^∞ \frac{λ^α}{\Gamma (α)} t^{α-1}e^{-λt} dt
= \frac{λ^α}{\Gamma (α)} \int_0^∞ t^{α-1}e^{-λt}dt
= \frac{λ^α}{\Gamma (α)} \int_0^∞ t^{α-1}e^{-t}e^λdt
= \frac{λ^αe^λ}{\Gamma (α)} \int_0^∞ t^{α-1}e^{-t}dt
= \frac{λ^αe^λ \Gamma (α)}{\Gamma (α)}
= λ^αe^λ

...where did I lose the plot?

You lost it when you said ##e^{-λt}=e^{-t}e^λ##. That's not true. I would try the variable substitution ##u=λt##.
 
Last edited:
  • Like
Likes 1 person
Looks like I need to refresh myself on the laws of exponents.

That substitution did the trick, thanks.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top