Show x+y & x-y are Orthogonal if x & y Have Same Norms

  • Thread starter Thread starter physicsss
  • Start date Start date
  • Tags Tags
    Orthogonal Vectors
physicsss
Messages
319
Reaction score
0
Show that x+y and x-y are orthogonal if and only if x and y have the same norms.

Can someone get me started?
 
Physics news on Phys.org
1) What does "orthogonal" mean here?

2) So if x+y and x-y are orthogonal what must be true?

3) And in order for that to be true what about x and y?
 
Can you think of a nice geometrical application of this result

\left\langle x+y, x-y\right\rangle =0 \Longleftrightarrow ||x||=||y|| ?

Daniel.
 
So (x+y)(x-y)=0, which can be turned into ||x||^2 = ||y||^2 take the square root of each side, I get ||x|| = ||y||.

As for dextercioby's question, if that is true, then x, y, and x+y make up an isosceles right triangle?
 
The paralelelogramme with perpendicular (onto another) diagonals is a rhombus. Therefore, the vectors have equal modulus. Actually, u've proven the reverse, viz.the geometrical result (theorem/proposition) by algebraic methods only. :wink:

Daniel.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top