Show z^2 maps the circle |z-1|=1 to a cardioid

  • Thread starter Thread starter oab729
  • Start date Start date
  • Tags Tags
    Circle
oab729
Messages
12
Reaction score
0

Homework Statement


show z^2 maps the circle |z-1|=1 to a cardioid 2(1+cos(theta))e^(i*theta)


Homework Equations





The Attempt at a Solution


I tried using the restriction |z-1| = 1 and simply got that r^2=2x.

Then I tried to apply that and got

z^2=2xe^(2i*theta)

I've been trying for a good 15 minutes.
 
Physics news on Phys.org
NVM, take z = 1+cos +isin
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top